

Biology | 2016-2017 Assessment Plan

- 1. Please review last year's assessment results (2015-2016) as well as the Academic Program Assessment Report with the faculty in your program. How does your program plan to take these results into consideration in future programmatic planning?
 - Last year's assessment results were discussed at the Biology Faculty Meeting 9th September 2016 (2:00-3:00).
 - Discussed assessment report from 2015-2016 which summarized assessment of learning outcome 1 ("Describe the organization and diversity of life at levels of complexity from subcellular to ecosystems"). Embedded assessments by Pott and Mueller led to meaningful assessment (see Assessment Report 2015-2016). Students showed marked improvement in most areas (comparing pre and post test scores). However, two difficult concepts (metabolism and genome organization) were identified as areas that students had difficulty mastering. Mueller and Pott plan to devote additional class and review sessions to these concepts in order to improve student learning.
- Please review your program's Learning Outcomes. Do any of them need to be updated or clarified? Please provide brief indications of the kinds of assessment that <u>might</u> be used to assess each outcome. Please compare your Learning Outcomes to the University's main learning objectives. Which programmatic outcomes match university mission outcomes?

Learning Outcome	Assessment techniques	Courses	Assessor	Semester	University Mission Outcomes
1) describe the organization	Embedded	Principles of	Pott	2015-	critical
and diversity of life at levels	assessment	Biology	Mueller	2016	thinking
of complexity from	(exam	(201/202)			
subcellular to ecosystem	questions, pre				diversity
	and post				
	assessment)				
2) demonstrate an	Embedded	Biology	Wolf	2014-	critical
understanding of genetic	assessment	Capstone	Howe	2015	thinking
information, hereditary	(exam				
processes, and their	questions)				diversity
relevance to evolutionary					
change as a product of					
mutation and natural					
selection					

Biology Student Learning Outcome Assessment Plan

3) explain the important	Embedded	Plant	Stahlhebe	2017-	critical
processes and pathways that	assessment	Physiology	r	2018	thinking
sustain living organisms	(exam				
including functional systems	questions)	Comparative	? New		diversity
for exchange of energy and		Physiology	faculty		
matter	Class projects		member?		
4) solve problems by	Embedded	Microbiology	Brian	2013-	problem-
applying a scientific process	assessment	Biochemistry	Merkel	2014	focused
of inquiry, including the	(exam questions		Warren		education
effective use of appropriate	and semester		Johnson		
techniques, instrumentation,	lab projects)				interdiscip
and data analysis					linary
5) identify and interpret	Oral	Ecology	Wolf	2016-	problem-
findings of scientists and	presentation	Conservation	Wolf	2017	focused
communicate results of		Biology			education
scientific work to others in			Howe		
the scientific community and	Poster	Capstone			interdiscip
the general public	presentation		Grubisha		linary
		Mycology or			
	Class projects	Environment			
		al Micro.			

3. Which outcome will you assess this year (2016-2017)?

Learning outcome 5 will be addressed: identify and interpret findings of scientists and communicate results of scientific work to others in the scientific community and the general public.

4. Which technique will you use to assess this outcome?

Performance on lab reports, papers, posters and oral presentations will be used to assess this outcome.

5. Which course or group of students will you assess on the outcome chosen above and when?

Principles of Ecology, Conservation Biology, Mycology or Environmental Microbiology and Biology Capstone will all be assessing this learning outcome.