Program: Biology

Academic Program Assessment Plan (2017-2018)

1. Please review last year's assessment results (2016-2017) as well as the Academic Program Assessment Report with the faculty in your program. How does your program plan to take these results into consideration in future programmatic planning?

We will continue to provide opportunities for students to read and interpret scientific results as well as communicate scientific results through discussion and presentation. We feel that our students are meeting this learning objective with the current opportunities in classes and the capstone course.

2. Please review your program's Learning Outcomes. Do any of them need to be updated or clarified?

The Biology Faculty reviewed our learning outcomes on September 14, 2017. We are happy with our current learning outcomes.

a. Please provide brief indications of the kinds of assessment (e.g. course exams, term papers, course projects, senior seminar, senior interview, etc.) that <u>might</u> be used to assess each outcome. (The purpose here is to see that your program has considered ways it might measure each outcome.)

Learning Outcome	Assessment techniques	Courses	Assessor	Semester
1) describe the	Embedded	Principles of Biology	Pott	2015-2016
organization and	assessment (exam	(201/202)	Mueller	
diversity of life at levels	questions, pre and			
of complexity from	post assessment)			
subcellular to ecosystem				
2) demonstrate an	Embedded	Biology Capstone	Wolf	2014-2015
understanding of	assessment (exam		Howe	
genetic information,	questions)			
hereditary processes,				
and their relevance to				
evolutionary change as a				
product of mutation and				
natural selection				
3) explain the important	Embedded	Plant Physiology	Stahlheber	2017-2018
processes and pathways	assessment (exam			
that sustain living	questions)	Comparative Physiology	? New	
organisms including			faculty	
functional systems for	Class projects	Biology 201	member?	
exchange of energy and				
matter				

4) solve problems by	Embedded	Microbiology	Brian	2013-2014
applying a scientific	assessment (exam	Biochemistry	Merkel	
process of inquiry,	questions and		Warren	
including the effective	semester lab		Johnson	
use of appropriate	projects)			
techniques,				
instrumentation, and				
data analysis				
5) identify and interpret	Oral presentation	Ecology	Wolf	2016-2017
findings of scientists and		Conservation Biology	Wolf	
communicate results of				
scientific work to others	Poster presentation	Capstone	Howe	
in the scientific				
community and the	Class projects	Mycology or	Grubisha	
general public		Environmental Micro.		

- b. Please compare your Learning Outcomes to the University's main learning objectives: interdisciplinary, problem-focused education; critical thinking; diversity; environmental sustainability; and engaged citizenship. (These objectives were identified in the MLLO Project, which may be found here: http://www.uwgb.edu/MLLO/.) Which programmatic outcomes match university mission outcomes?
- 3. Which outcome will you assess this year (2017-2018)?
 - 3) explain the important processes and pathways that sustain living organisms including functional systems for exchange of energy and matter
- 4. Which technique will you use to assess this outcome?

Exams, pre/post embedded assessment, papers.

5. Which course or group of students will you assess on the outcome chosen above and when?

Students in upper level courses – Plant Physiology and/or Comparative Physiology. Students in BIO 201.