

1. Please give a brief overview of the assessment data you collected this year.

Env Sci 330 is an upper-level elective course for the major and minor. Enrollment was 22.

Assessment results:

Assessment was performed using the rubric below. In each category the percentage and (number) of students achieving each criteria is reported.

n= 22 students	Unsatisfactory	Developing	Satisfactory	Exemplary
Write correct water mass balance from written problem description	Fails to write water mass balance	Identifies at least 70% of mass balance terms from written problem statement	Identifies all but one mass balance term from written problem description 36.4%, (8)	Identifies all mass balance terms relevant to written problem description 63.6%, (14)
Apply appropriate mathematical models to estimate each term in mass balance	Fails to identify appropriate models for mass balance terms	Applies correct models for at least 70% of mass balance terms	Makes only one error in determining values of mass balance terms	Applies appropriate math models for each term to correctly determine its numerical value
Apply statistics	Eails to apply	13.6% (3)	31.8%, (7)	54.5%, (12)
design storm	statistics	statistics, but fails to consider all factors	45.5%, (10)	statistical models to determine design storm depth 54.5%, (12)
Convert each term in mass balance to volume of water	Fails to convert mass balance terms to volumes	Correctly converts at least 65% of mass balance terms to volumes	Makes only one error in converting mass balance terms to volumes	Applies correct methodology to convert mass balance term to volumes
			27.3%, (6)	72.7%, (16)

Determine correct storm storage volume/depth	Fails to use mass balance or design storm to determine correct volume/depth	Makes more than one error in determining storage volume/depth	Makes only one error in determining storage volume/depth	Correctly determines storage volume/depth
		9.1%, (2)	31.8%, (7)	59.1%, (13)
Convert given hydrograph into design storm hydrograph	Fails to model design storm hydrograph	Makes more than one error in modeling design storm hydrograph	Makes only one error in modeling design storm hydrograph	Correctly models design storm hydrograph
		27.3%, (6)	27.3%, (6)	45.4%, (10)

2. How will you use what you've learned from the data that was collected?

ET 330: Outcome 3

The one area in which students seem to need improvement is in the mathematical modeling of hydraulic data to estimate terms in the hydrologic mass balance. Next fall, I will include more practice via homework and in-class assignments to help the students master modeling. Other than that, no significant changes are needed. I will emphasize the need to go over the project carefully before handing it in to avoid careless errors.