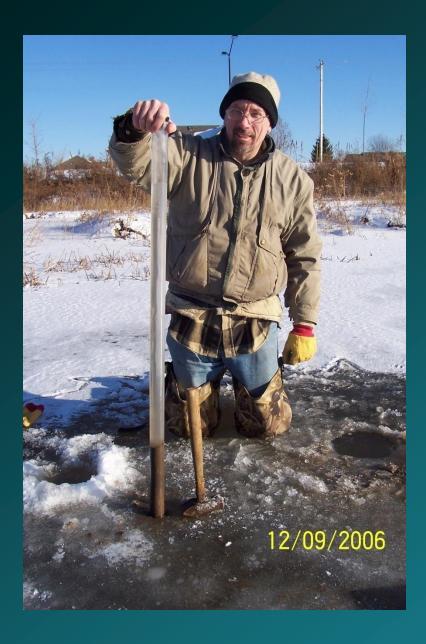
Lower Fox River Suspended Sediment and Phosphorus Load Allocations and Reclucito Strategies to Green Bay using the Soil and Water Assessment Tool (SWA)

Paul Baumgart and Kevin Fermanich

**University of Wisconsin – Green Bay** 

Lower Fox River Watershed Monitoring Program – www.uwgb.edu/watershed


SWAT International Conference October 17-19, 2008 Beijing, China



watershed monitoring program

With additional support from EPA functing of the Integrated Watershed Approach Demonstration Project A Pollatant Reduction Optimization Analysis for the Lower FoxRiver Basin and the Green Bay Area of Concern (Laura Blake of The Cadmus Group and Sam Ratick of Clark University)

www.uwgb.edu/watershed/reports/LFox\_Load All



## Paul Baumgart

- A watershed modeler with "one boot in the field"
- Responsible for monitoring and modeling in the Lower Fox River Basin.
- 15 years experience with SWAT



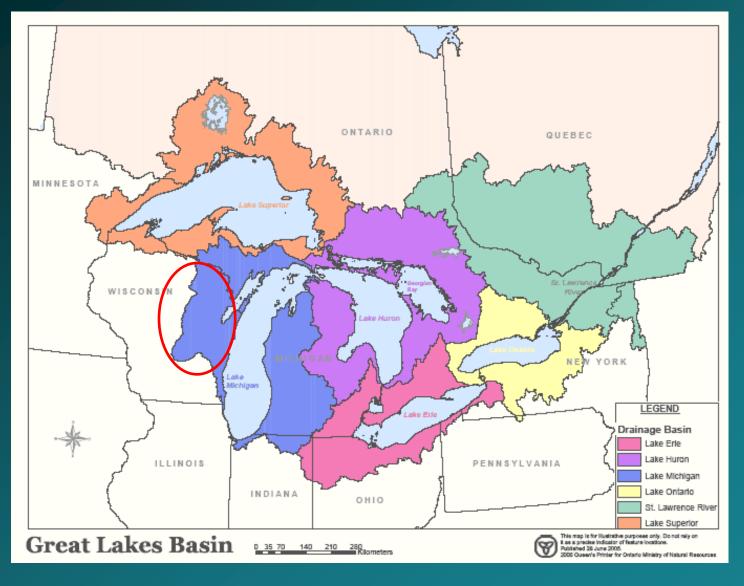
# **Presentation Outline**

- Background: Lower Fox River Sub-basin Description
- Modeling Methods and Inputs
- Calibration and Validation
- Model Results: Simulated Phosphorus and Suspended Sediment Export from Sub-basin
- Alternative Management Scenarios

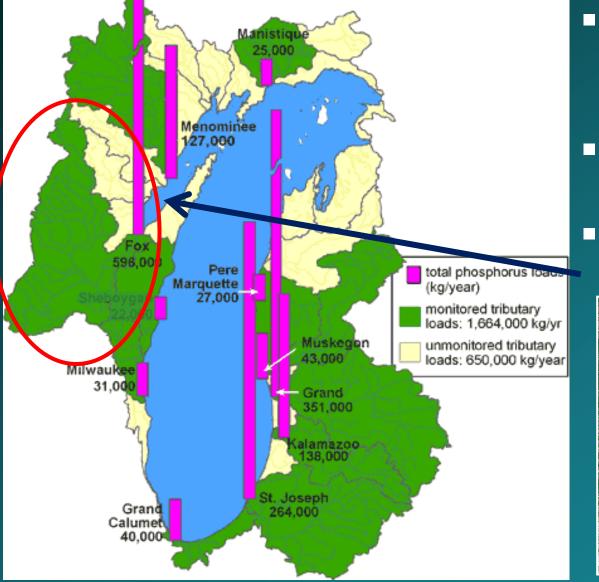
# **Primary objective**

Utilize watershed simulations to support watershed TMDL load allocations and predict impact of <u>sediment</u> and <u>phosphorus</u> reduction strategies within Lower Fox River Sub-basin (1580 km<sup>2</sup>)

TMDL = Total Maximum Daily Load = Watershed pollutant load reduction plan


# Lower Fox River, Wisconsin, Great Lakes Basin




# Lower Fox River, Wisconsin, Great Lakes Basin



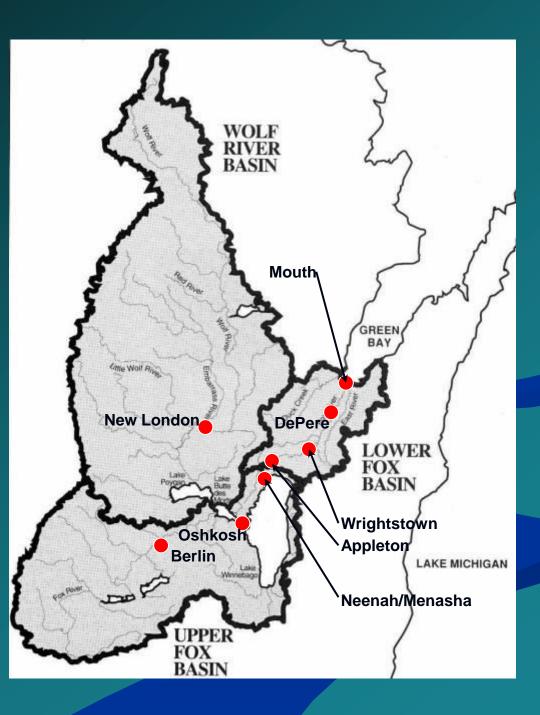
# Lower Fox River, Wisconsin, Great Lakes Basin

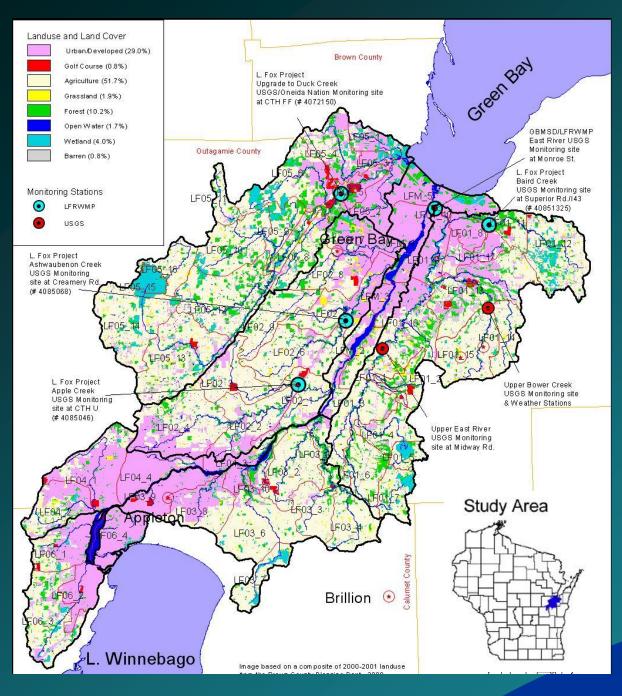


# Tributary Loads of P to L. Michigan



Fox River ~ 25%
 of total annual
 load to L. Mich.


- 15% of L. Mich.
   Watershed Area
- 70% of P load to Green Bay



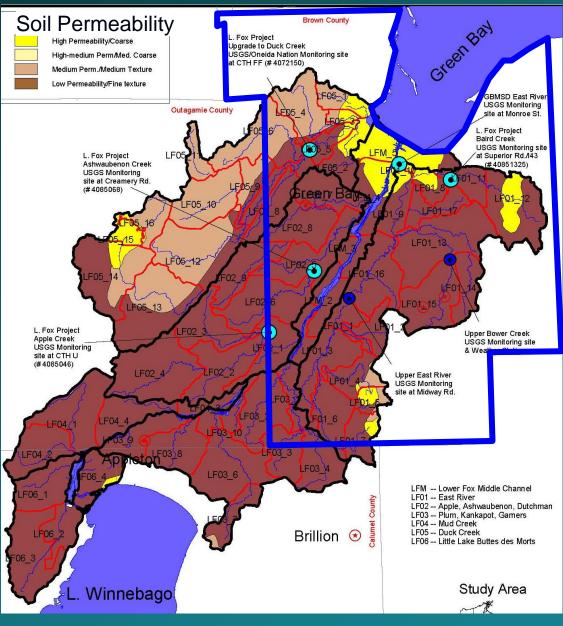

#### **Fox-Wolf Basin**

Total P Load from Fox River into Green Bay:
~ 540,000 kg/yr
~ 80% from runoff
Lower Fox Basin
1580 km<sup>2</sup> (10% of FWB)
1⁄4 P
1⁄4 Susponded

½ Suspended Solids






#### 2002 Landuse and Land Cover

- 52% Ag/Rural
- 29% Urban/Dev.
- 10% Forest
- 4% Wetland
- Significant reduction of P and Sediment from Ag. needed

# Watershed background:

- Clay soils
- High % runoff
- 730 mm precip avg
- ~ 200-240 mm flow
- ~ 16-27% baseflow





# Runoff Sources of P & Suspended Solids



# Soil and Water Assessment Tool -SWAT

Previous Modeling at University of Wisconsin-Green Bay:

- Marcus (SWRRB; 1993)
- McIntosh et al. (EPIC, SWRRB, AGNPS; 1993a, 1993b, 1994)
- Qui (SWRRB; 1993); Sugiharto et al. (EPIC; 1994)
- Baumgart (SWRRB and SWAT; 1994a, 1994b, 1998, 2000, 2005 2007).

#### This Study:

- Applied <u>modified version</u> of SWAT 2000 code
- GIS > spreadsheet > SWAT 2000 & reversed for output: to allow more flexible/complex management files

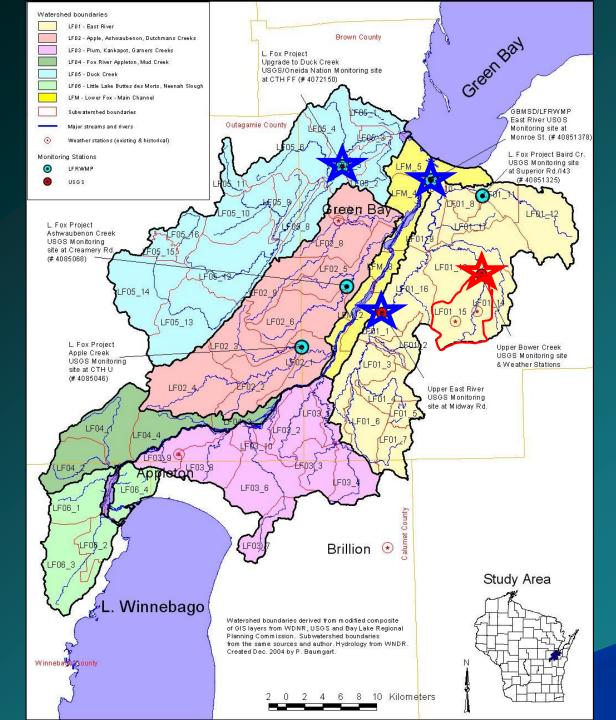
# Model Inputs – GIS layers

- Landuse land cover
  - Wisconsin1992; local agencies 2000 to 2004
  - Trends LULC
- Soils County SSURGO
  - sub-watershed area-weighted averages
- Slope 30 m DEM, land cover specific (i.e. wetland forest, ag, urban)
- Watershed boundaries state, federal, local
- Wisconsin Stream hydrology 1:24k, + County Buffers
- ARC-INFO, ARCVIEW, Spatial Analyst (ESRI)
- Climate: 1976-2000 daily, 3 NWS long-term stations (long-term scenarios)
  - Plus 15 UWGB & USGS tipping buckets & loggers
- Point source loads from WDNR

## Primary Hydrologic Response Units (HRUS)

- Agriculture DAIRY (6 year crop rotation of corn-grain, corn-silage, soybean, 3 years of alfalfa); ~ 80%
  - 1 Conventional tillage practice
  - 2 Mulch-till (>30%)
  - 3 No-till
  - 4 Barnyards

#### Ag – CASH CROP (1 yr corn, 1 yr soybean); ~ 20%


- 5 Conventional tillage practice
- 6 Mulch-till (>30%)
- 7 No-till
- Non-Agricultural
  - 8 Urban
  - 9 Grassland
  - 10 Forest
  - 11 Wetland
  - 12 Golf course
  - 13 Barren
- 31 HRU's Constant = (dairy 6 x 3) + (cash crop 2 x 3) + barnyard + 6 (non-ag); 0.0000001 if area = 0

# **Agricultural HRU's**

- Percent crops in subwatersheds derived from WISCLAND land cover adjusted to fit Wisconsin Ag. Statistics
- Crop Rotation phase altered: 1 HRU for each phase (6 dairy, 2 cash crop in year 2000+ scenarios)
- Residue Level/Tillage Practices: NRCS & County Transect Survey -1996/1999/2000 data applied on watershed basis
   a) partitioned: conventional till (CT), mulch till (MT) and no-till (NT)
   b) separated into DAIRY and CASH CROP
   c) construct SWAT dairy and cash crop management files
- Crop Yields Calibrated (Wisconsin Ag. Stats for Brown County)
- Barnyard loads SWAT simulations calibrated HRU to BARNY modeled phosphorus loads (barn yard model)
- Manure and Fertilizer Inputs (UW-Ext Ag experts, NRCS and others)

# **Primary Model Modifications**

- Potential Evapotranspiration equations modified
  - Water yield still low, so Hargreaves-Samini PET equation multiplied by 0.81 (all methods relatively similar results after HS & PT code fixes)
- C-factor equation separated: 1) surface residue 2) canopy biomass (else C in plowed field too close to no-till when crop well underway)
- MUSLE Sediment equation modified to EPIC/APEX form, calibration simplified for suspended sediment loads (ysed.f)
- HRU's utilize sub-watershed channel length & area in MUSLE
- NRCS curve numbers in management files altered automatically according to soil hydro group to reduce # of \*.mgt files (readmgt.f)
- SWAT 2000 code fixes: wetland P trapping; perennial alfalfa kept growing after kill; allow min crop growth if < base temp, ...</p>
- Other changes: 1) Input Temp adjust to force snow/rain based on observed precip form; 2) QUAL2e P transport: excess P in chlorophyll from subwatersheds - minimize P content "temporary fix"



#### Calibration & Initial Validation Sites

PRIMARY SITE: Daily flow and loads Bower Creek - 36 km<sup>2</sup> Calibrate 1991-94 Validate 1996-97

# SECONDARY SITES for VALIDATION:

 Daily flow and limited samples:

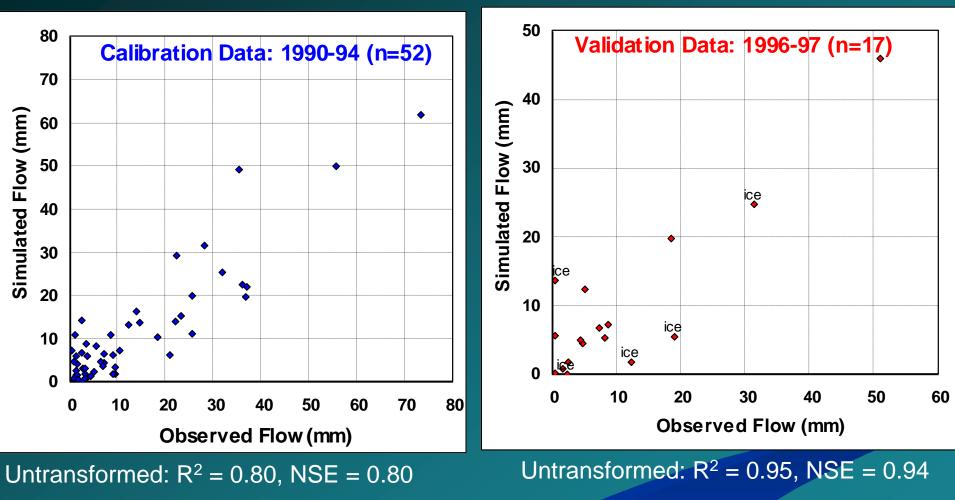
East River at Midway -121 km<sup>2</sup>

Duck Creek - 276 km<sup>2</sup> East River - 374 km<sup>2</sup>

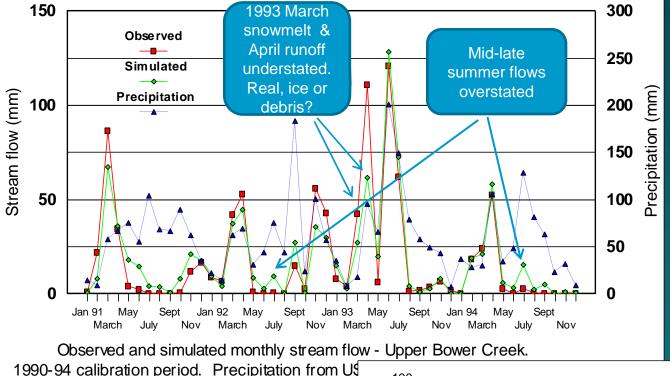
# **Model Calibration & Assessment**

#### Calibrate:

- 1. total flow & base flow
- 2. crop yields, biomass and residue, soil nutrient levels
- 3. suspended sediment
- 4. phosphorus
- 5. dissolved P

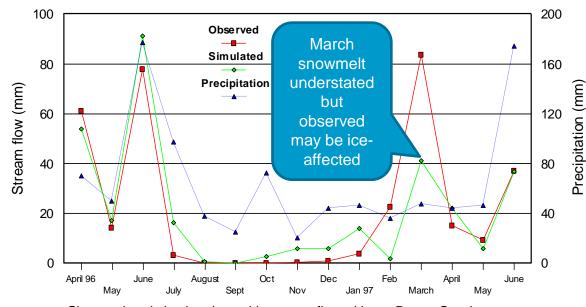

#### Validate/assess: flow, SS, P at different time periods/sites

- event
- monthly
- annual
- total basis


## **Initial Calibration & Validation**

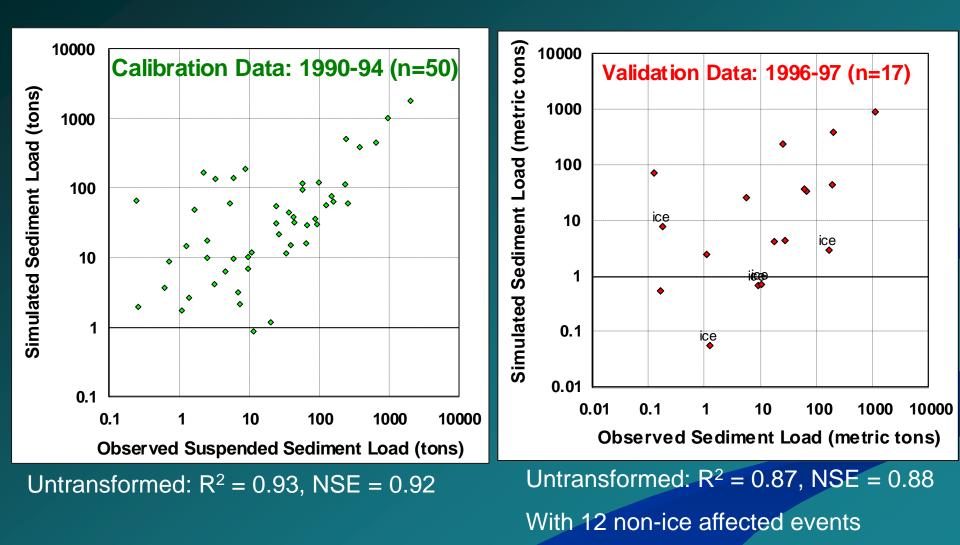


#### **Stream Flow - EVENTS** Upper Bower Creek (36 km<sup>2</sup>)

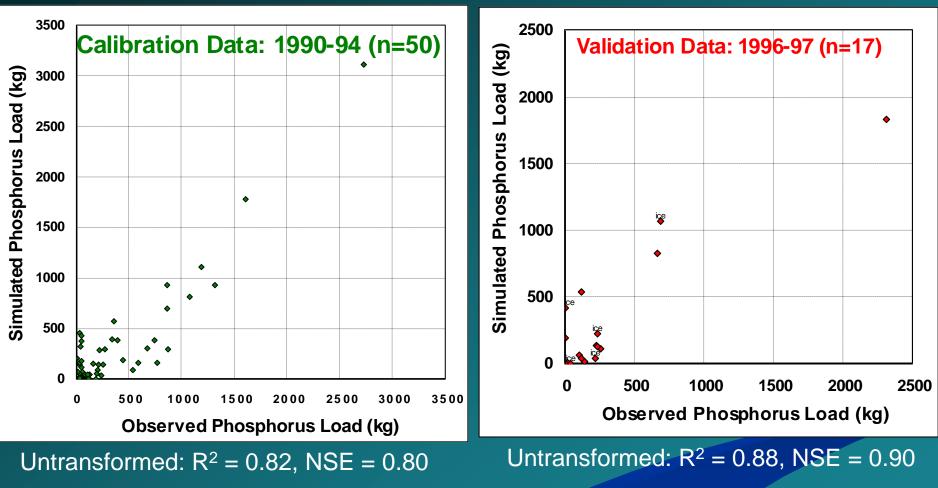



for n = 12, not ice-affected events




#### <u>Calibrate</u> <u>Monthly</u> <u>Stream flow</u> <u>Bower Creek</u> R<sup>2</sup>=.87, NS=0.86

Validate Monthly Stream flow Bower Creek R<sup>2</sup>=0.76, NS=0.76



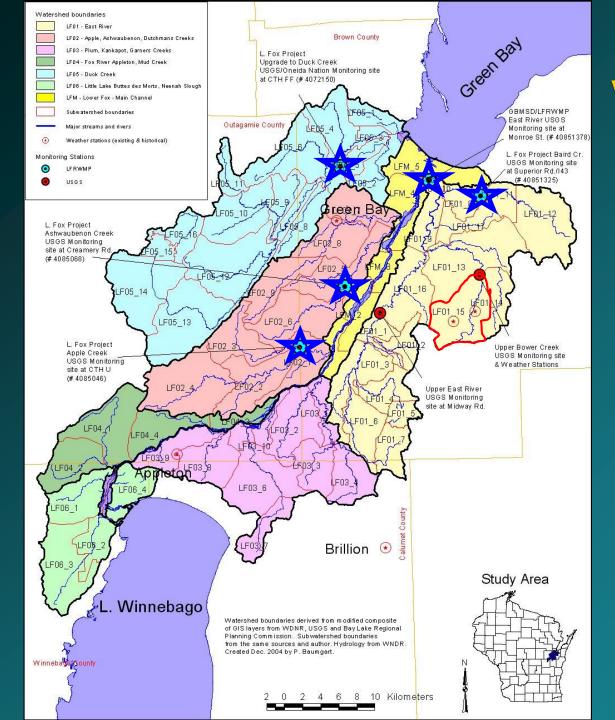

Observed and simulated monthly stream flow - Upper Bower Creek. 1996-97 validation period. Precipitation from USGS weather stations is also shown.

#### Suspended Sediment - EVENTS Bower Creek



#### Total Phosphorus – EVENTS Bower Creek



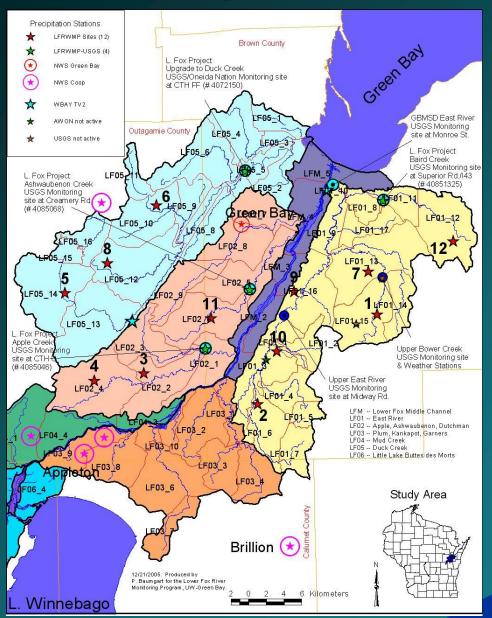

With 12 non-ice affected events

## Additional Monitoring and Model Assessment

- Model VALIDATED, good fit for flow, TSS, TP
   Initial validation data set limited
   1993 LFRWMP added 5 automated USGS monitoring stations
  - Continuous flow
  - Event and low flow sampling
  - Daily TSS and P loads with GCLAS
  - DP with regression model



ISCO Sampler Apple Creek



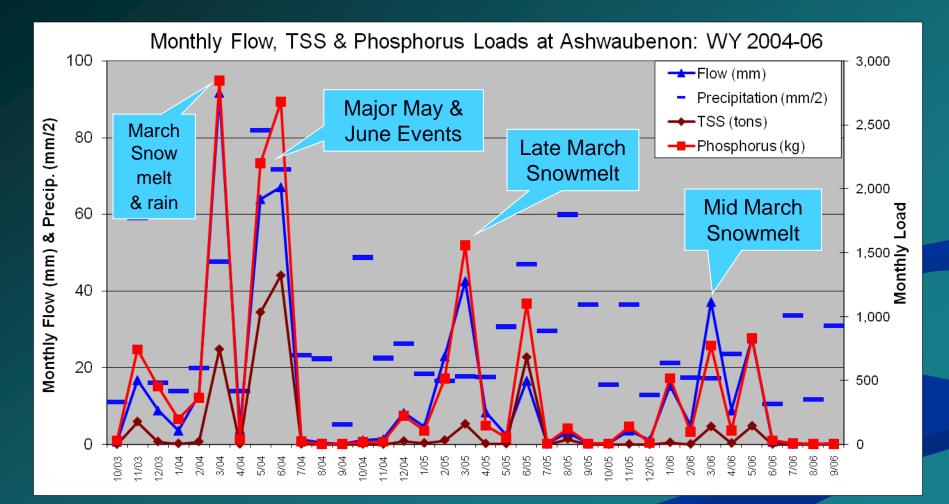

#### LFRWMP Validation Sites

#### 2004-06 daily flow & TSS loads & P loads

Apple Creek - 117 km<sup>2</sup> Ashwaub. Cr. - 48 km<sup>2</sup> Baird Creek - 54 km<sup>2</sup> Duck Creek - 276 km<sup>2</sup> East River - 374 km<sup>2</sup>

# Model Inputs – Rain Gauge Network




**Climate:** 

- 3 long-term NWS stations
- PLUS 15 recording rain gauges

2003-present

Other sources

#### 2004-06 monthly monitoring data 48 km<sup>2</sup> watershed



2004 many large events in March, May and June, followed by dry years dominated by snowmelt/rain contributions in March

#### Assessment/Validation Summary: Unadjusted model applied to 5 watersheds (2004-05 data)

#### 2004 Wet year; 2005 very Dry & dominated by snowmelt

|             |       | Flow |        |       | SS   |        | Phosphorus     |      |        |
|-------------|-------|------|--------|-------|------|--------|----------------|------|--------|
| Stream      | $R^2$ | NSCE | % diff | $R^2$ | NSCE | % diff | R <sup>2</sup> | NSCE | % diff |
| Apple       | 0.86  | 0.86 | 6.3%   | 0.87  | 0.77 | -21.7% | 0.81           | 0.81 | -3.6%  |
| Ashwaubenon | 0.90  | 0.85 | 26.1%  | 0.69  | 0.69 | 1.9%   | 0.82           | 0.82 | -3.1%  |
| Baird       | 0.84  | 0.83 | 16.6%  | 0.66  | 0.65 | -3.7%  | 0.70           | 0.66 | -0.9%  |
| Duck        | 0.86  | 0.84 | -12.5% | 0.77  | 0.75 | 3.0%   | 0.67           | 0.64 | 25.5%  |
| East River  | 0.94  | 0.93 | -8.0%  | 0.72  | 0.59 | 45.6%  | 0.86           | 0.86 | 7.6%   |
|             |       |      |        |       |      |        |                |      |        |

- Simulated & observed monthly statistics. Relative differences for entire period.
- Validation criteria objective: R<sup>2</sup> or NSCE of 0.6 or greater (with some qualifications)

#### Model Assessment/Validation (2004-05 data)

- Acceptable results from model
- Reasonable fit: flow, TSS, P for most streams
- East River high sediment, Duck somewhat high P, still acceptable
- BUT Adjusted model to hopefully get more accurate predictions (Optimization & TMDL)
   East River (sediment) and Duck Creek TP only

#### Assessment/Validation Summary: ADJUSTED\* Duck Cr. & East River (2004-05)

- East River: sediment transport factor (800 mg/L to 500 mg/L)
- Duck Creek: P sorption coefficient and P partitioning coef.\*

|             | Flow  |      |        |                | SS   |        | Phosphorus |      |        |
|-------------|-------|------|--------|----------------|------|--------|------------|------|--------|
| Stream      | $R^2$ | NSCE | % diff | R <sup>2</sup> | NSCE | % diff | $R^2$      | NSCE | % diff |
| Apple       | 0.86  | 0.86 | 6.3%   | 0.87           | 0.77 | -21.7% | 0.81       | 0.81 | -3.6%  |
| Ashwaubenon | 0.90  | 0.85 | 26.1%  | 0.69           | 0.69 | 1.9%   | 0.82       | 0.82 | -3.1%  |
| Baird       | 0.84  | 0.83 | 16.6%  | 0.66           | 0.65 | -3.7%  | 0.70       | 0.66 | -0.9%  |
| Duck*       | 0.86  | 0.83 | -12.8% | 0.75           | 0.73 | 3.9%   | 0.66       | 0.66 | 5.6%   |
| East River* | 0.94  | 0.93 | -8.0%  | 0.74           | 0.72 | 20.7%  | 0.86       | 0.86 | 7.6%   |
|             |       |      |        |                |      |        |            |      |        |

| <u>Unadjusted</u> |                | Flow |        |                | SS   |        | Phosphorus     |      |        |
|-------------------|----------------|------|--------|----------------|------|--------|----------------|------|--------|
| Stream            | R <sup>2</sup> | NSCE | % diff | R <sup>2</sup> | NSCE | % diff | R <sup>2</sup> | NSCE | % diff |
| Apple             | 0.86           | 0.86 | 6.3%   | 0.87           | 0.77 | -21.7% | 0.81           | 0.81 | -3.6%  |
| Ashwaubenon       | 0.90           | 0.85 | 26.1%  | 0.69           | 0.69 | 1.9%   | 0.82           | 0.82 | -3.1%  |
| Baird             | 0.84           | 0.83 | 16.6%  | 0.66           | 0.65 | -3.7%  | 0.70           | 0.66 | -0.9%  |
| Duck              | 0.86           | 0.84 | -12.5% | 0.77           | 0.75 | 3.0%   | 0.67           | 0.64 | 25.5%  |
| East River        | 0.94           | 0.93 | -8.0%  | 0.72           | 0.59 | 45.6%  | 0.86           | 0.86 | 7.6%   |

## Final: Assessment/Validation (2004-06)

**2006 data added later to validate**; dry year, mostly snowmelt, so model didn't perform as well

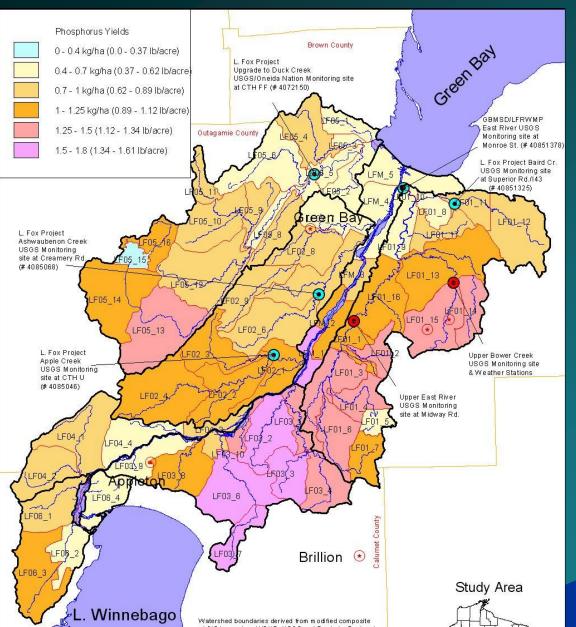
|             | Flow  |      |        | TSS   |      |        | Phosphorus |      |        |
|-------------|-------|------|--------|-------|------|--------|------------|------|--------|
| Stream      | $R^2$ | NSCE | % diff | $R^2$ | NSCE | % diff | $R^2$      | NSCE | % diff |
| Apple       | 0.84  | 0.83 | 14.7%  | 0.79  | 0.73 | -8.3%  | 0.76       | 0.75 | 7.8%   |
| Ashwaubenon | 0.89  | 0.82 | 30.4%  | 0.65  | 0.64 | 23.1%  | 0.82       | 0.82 | 4.4%   |
| Baird       | 0.84  | 0.82 | 21.6%  | 0.60  | 0.60 | 12.2%  | 0.67       | 0.66 | 11.9%  |
| Duck*       | 0.85  | 0.83 | -8.4%  | 0.73  | 0.71 | 21.3%  | 0.64       | 0.64 | 13.2%  |
| East River* | 0.92  | 0.91 | -6.6%  | 0.66  | 0.59 | 37.6%  | 0.80       | 0.79 | 16.1%  |

#### **Model Assessment Summary**

- In general, good correspondence between simulated and observed stream flow and loads of P and SS (monthly, annual, totals)
- Model response acceptable for predictive simulations in sub-basin
- Model least able to predict flow and loads:
  - small events, affected phosphorus loads most
  - after prolonged dry periods
  - during snow melt periods
  - from East River at this time (sediment loads)

## Uncertainty in Observed Flow & Loads, so don't expect perfect fit

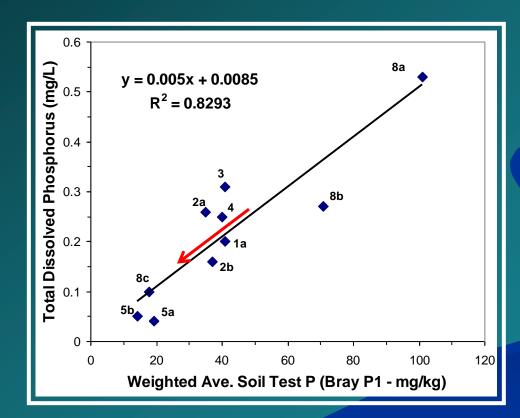



#### Uncertainty in Observed Flow & Loads, so don't expect perfect fit



## Uncertainty in Observed Flow & Loads Missing or invalid samples




### **Model Results – Baseline Conditions**



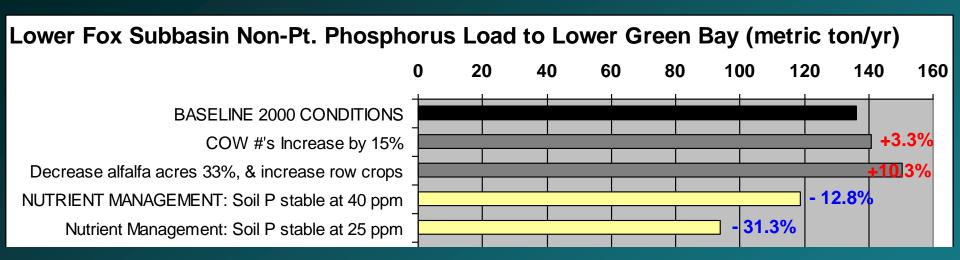
Stream flow and loads at subbasin, watershed and subwatershed scales Total and by HRU/landuse category

- 1977-2000 climatic period for simulations
- 2004 landuse Baseline conditions
- Alternative management scenarios over same period

- Conservation Tillage: simply increase HRU areas for No-Till and Mulch Till; export txt files to \*.hru
- Stabilize Soil P Levels at Current Level (40 ppm) and at level from mid-1970's (25 ppm)
  - Reduce P in feed ration & fertilizer P (copy new Fert2000.dat)



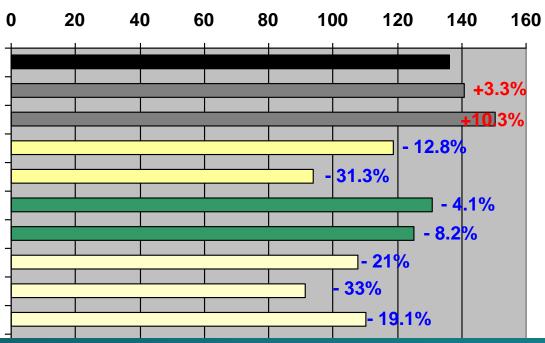
- Conservation Tillage: simply increase HRU areas for No-Till and Mulch Till; export txt files to \*.hru
- Stabilize Soil P Levels at Current Level (40 ppm) and at level from mid-1970's (25 ppm)
  - Reduce P in feed ration & fertilizer P (copy new Fert2000.dat)
- Vegetated Buffer Strips




- Conservation Tillage: simply increase HRU areas for No-Till and Mulch Till; export txt files to \*.hru
- Stabilize Soil P Levels at Current Level (40 ppm) and at level from mid-1970's (25 ppm)
  - Reduce P in feed ration & fertilizer P (copy new Fert2000.dat)
- Vegetated Buffer Strips
- Cover Crop on corn-silage and soybean fields
  - Substitute \*.mgt files

Corn Silage: with and without cover crops

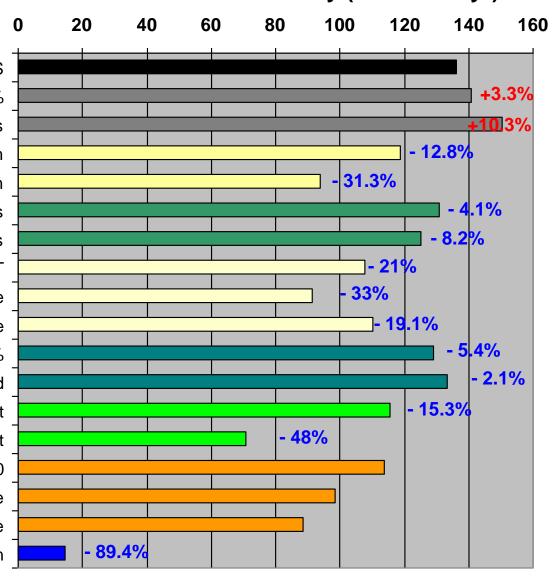
- Conservation Tillage: simply increase HRU areas for No-Till and Mulch Till; export txt files to \*.hru
- Stabilize Soil P Levels at Current Level (40 ppm) and at level from mid-1970's (25 ppm)
  - Reduce P in feed ration & fertilizer P (copy new Fert2000.dat)
- Vegetated Buffer Strips
- Cover Crop on corn-silage and soybean fields
  - Substitute \*.mgt files
- Biofuel Production: switchgrass: Added HRU
- Rotational grazing for dairy operations: Added HRU
- Increase Manure incorporation
- Others


## **Results: Alternative Management Scenarios**



### **Results: Alternative Management Scenarios**

Lower Fox Subbasin Non-Pt. Phosphorus Load to Lower Green Bay (metric ton/yr)

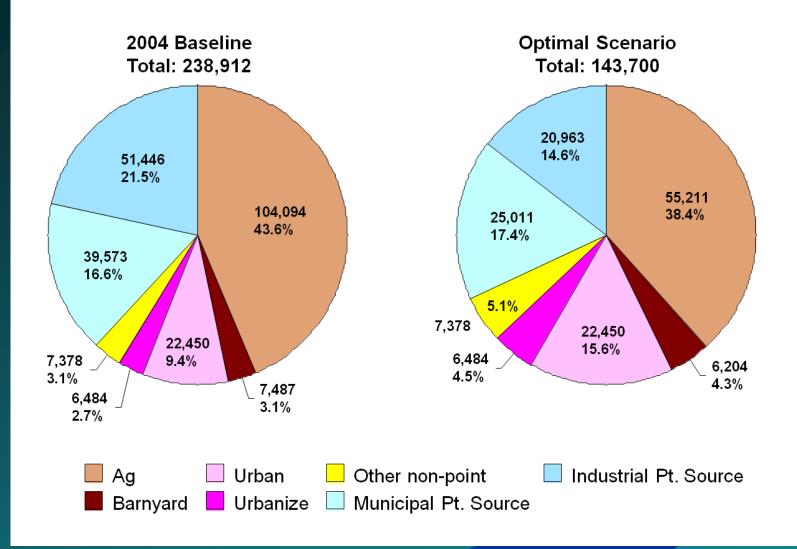

BASELINE 2000 CONDITIONS COW #'s Increase by 15% Decrease alfalfa acres 33%, & increase row crops NUTRIENT MANAGEMENT: Soil P stable at 40 ppm Nutrient Management: Soil P stable at 25 ppm VEG. BUFFER - 100% of 1:24k hydrology streams VBS's - 100% of 1:24k streams & road ditches CONSERVATION TILLAGE ------ 100% NT Cons. Till - 100% NT, incorporate ALL manure Cons. Till - CT10%,MT60%,NT30% inc. manure



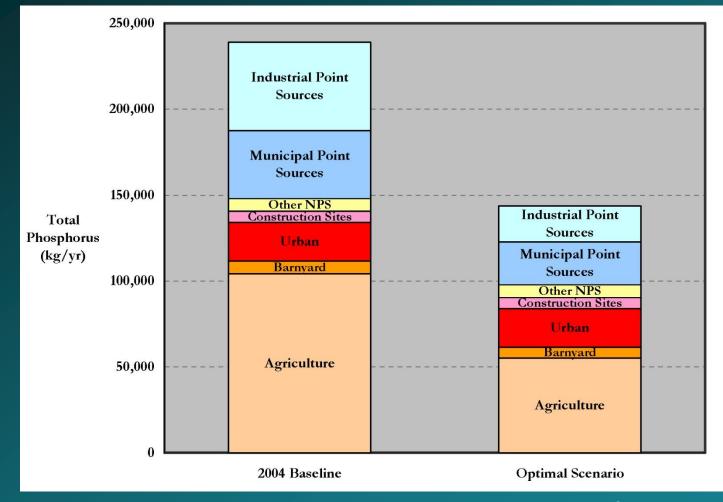
## **Alternative Management Scenarios**

Lower Fox Subbasin Non-Pt. Phosphorus Load to Lower Green Bay (metric ton/yr)

**BASELINE 2000 CONDITIONS** COW #'s Increase by 15% Decrease alfalfa acres 33%, & increase row crops NUTRIENT MANAGEMENT: Soil P stable at 40 ppm Nutrient Management: Soil P stable at 25 ppm VEG. BUFFER - 100% of 1:24k hydrology streams VBS's - 100% of 1:24k streams & road ditches CONSERVATION TILLAGE ------100% NT Cons. Till - 100% NT, incorporate ALL manure Cons. Till - CT10%, MT60%, NT30% inc. manure DAIRY PHOSPHORUS feed ration reduced by 25% COMPOSTING Facility: 20% of manure displaced ROTATIONAL GRAZING, 40% of dairy farms adopt Rotational Grazing, 100% of ALL farms adopt URBAN AREA DOUBLES, current BMP's ~2025-30 Urban area doubles, BMP Conservative estimate Urban area doubles, BMP Optimistic estimate FORESTED, over Entire Subbasin




# Optimization Model: impact and cost of optimal scenario on phosphorus non-point loads to Green Bay from LFR sub-basin.


| BMP Scenarios                                                      | Phosphorus<br>(kg) | %<br>Reduced | Total<br>Cost | Avg Cost<br>per kg of<br>Phosphorus<br>Reduced |
|--------------------------------------------------------------------|--------------------|--------------|---------------|------------------------------------------------|
| Baseline 2004 Conditions                                           | 147,900            |              |               |                                                |
| 1. Nutrient Management: Dairy P Feed Ration: Reduce by 25%;        |                    |              |               |                                                |
| Implement 90%                                                      | 140,600            | 4.9%         | \$0           | \$0.00                                         |
| 2. plus: Increase manure incorporation from 50% to 85%             | 133,800            | 9.5%         | \$394,000     | \$27.94                                        |
| 3. plus: Stabilize Soil P (90% implement)                          | 125,300            | 15.3%        | \$1,646,000   | \$72.82                                        |
| 4. plus: Conservation Tillage - CT40%, MT45%, ZT15%                | 115,100            | 22.1%        | \$2,731,000   | \$83.25                                        |
| 5. plus: Cover Crops on corn silage and some soybean fields        | 111,600            | 24.5%        | \$3,200,000   | \$88.16                                        |
| 6. plus: Buffer Strips installed on 100% of 1:24k hydrology strear | 107,600            | 27.2%        | \$3,372,000   | \$83.68                                        |
| 7. plus: Reduce Soil P to 25 ppm; Implemention = 35%               | 100,600            | 32.0%        | \$5,901,000   | \$124.75                                       |
| 8. plus: Biofuel Switch grass crop; 7% of all total crop acres     | 97,700             | 33.9%        | \$6,929,000   | \$138.03                                       |

From: Integrated Watershed Approach Demonstration Project A Pollutant Reduction Optimization Analysis for the Lower Fox River Basin and the Green Bay Area of Concern (Table 6). Prepared by Laura Blake of The Cadmus Group for U.S. EPA (with contributions by P. Baumgart of UW-Green Bay and Sam Ratick of Clark University)

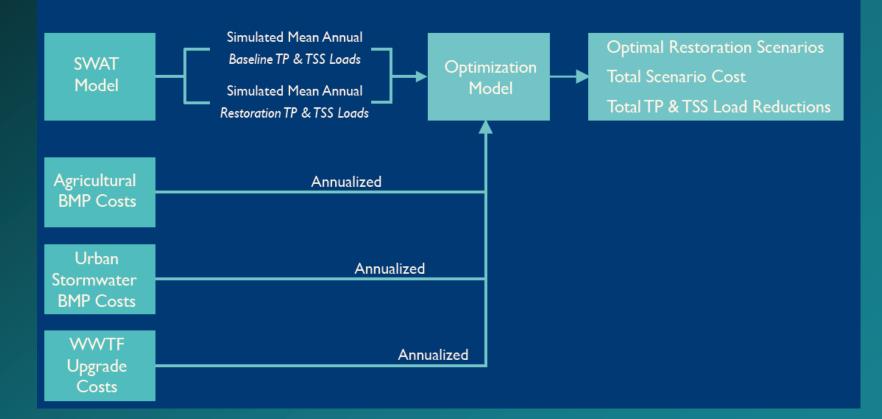
## Phosphorus Load Allocation from Lower Fox sub-basin to Lower Green Bay (kg/year)



### Simulated P Load to Lower Green Bay from LFR Basin: 2004 Baseline vs. Opt. Scenario of Ag BMPs and Point Source Reductions (note: Winn load ~ 288,000 kg/yr)



From: Integrated Watershed Approach Demonstration Project A Pollutant Reduction Optimization Analysis for the Lower Fox River Basin and the Green Bay Area of Concern (Table 6). Prepared by Laura Blake of The Cadmus Group for U.S. EPA (with contributions by P. Baumgart of UW-Green Bay and Sam Ratick of Clark University)


# **SWAT Simulations: Conclusions**

- Overall, model performed reasonably well during calibration and validation periods
- Simulated P export to Green Bay close to loads estimated by V. Klump et al. (1997) D. Robertson (2004)
- Substantial variation among watershed yields was simulated within the sub-basin
- Relatively wide range in simulated P and SS reductions from alternative scenarios
- Greatest simulated P and SS Ag. reductions:
  - 1. Intensive rotational grazing, followed by:
  - 2. Conservation tillage
  - 3. Nutrient management
- Flow regime changes from urbanization will likely create unstable stream banks and stream beds. A revised model needs to account for these changes

## **Next Steps**

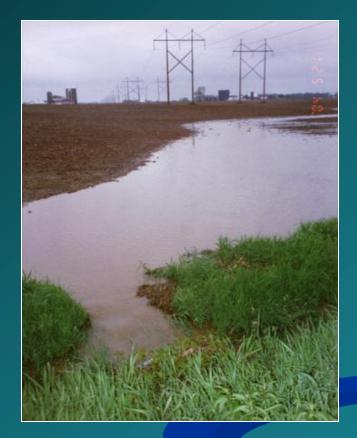
- Refine SWAT stream bank erosion estimates -Sediment source tracing with radionuclides and other constituents
- Refined Load allocation, TMDL and Optimization

Figure 4. Pollutant Reduction Optimization Modeling Framework for the TMDL



### www.uwgb.edu/WATERSHED

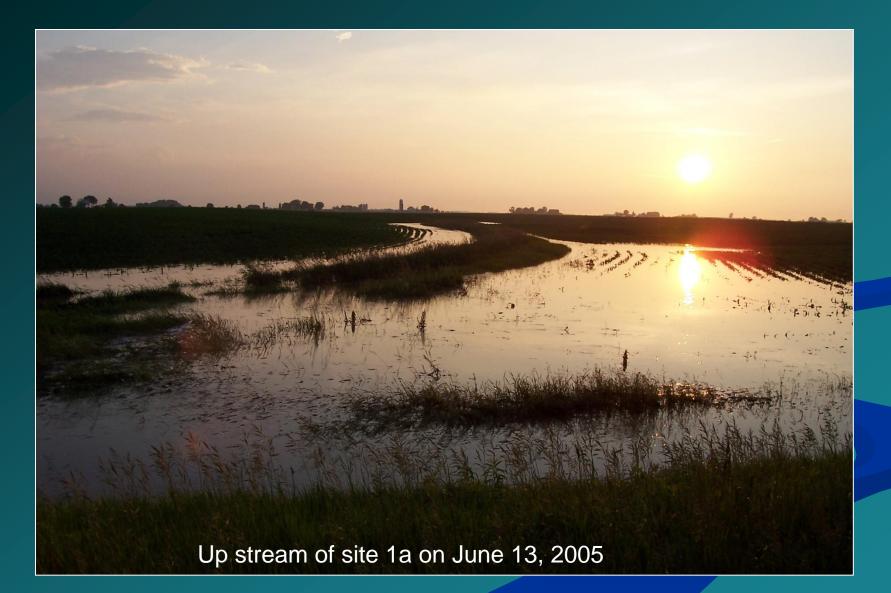
Paul Baumgart Assistant Scientist, Watershed Analyst


Kevin Fermanich Associate Professor Earth & Environmental Sciences Director, LFRWMP

Lower Fox River Watershed Monitoring Program Natural & Applied Sciences Dept. University of Wisconsin-Green Bay






watershed monitoring program



#### Cooperators and Funding

- UW-Green Bay, UW-Milwaukee
- Arjo Wiggins Appleton Ltd
- US Geological Survey
- US Environmental Protection Agency
- Cadmus
- GBMSD, Oneida Tribe of Indians





# Example of SWAT Simulation Results for a Sub-set of Ag BMP Scenarios

| Agricultural BMP Scenarios                                                   | Total P Load (kg) |  |  |  |
|------------------------------------------------------------------------------|-------------------|--|--|--|
| Conservation Tillage - 100% MT;VBS (100%)                                    | 4,611             |  |  |  |
| Conservation Tillage - 100% MT, Dairy P reduced-100%;VBS (100%)              | 4,225             |  |  |  |
| Conservation Tillage - 100% MT, Stable soil P-100%; VBS (100%)               | 3,832             |  |  |  |
| Conservation Tillage - 100% MT, Stable/Lower Soil P-100%; VBS (100%)         | 2,835             |  |  |  |
| Conservation Tillage - 50% MT & 50% CT;VBS (100%)                            | 5,129             |  |  |  |
| Conservation Tillage - 50% MT & 50% CT, Dairy P reduced-100%;VBS (100%)      | 4,734             |  |  |  |
| Conservation Tillage - 50% MT & 50% CT, Stable soil P-100%;VBS (100%)        | 4,316             |  |  |  |
| Conservation Tillage - 50% MT & 50% CT, Stable/Lower Soil P-100%;VBS (100%)  | 3,115             |  |  |  |
| Conservation Tillage - 25% MT & 75% CT;VBS (100%)                            | 5,388             |  |  |  |
| Conservation Tillage - 25% MT & 75% CT, Dairy P reduced-100%;VBS (100%)      | 4,989             |  |  |  |
| Conservation Tillage - 25% MT & 75% CT, Stable soil P-100%;VBS (100%)        | 4,558             |  |  |  |
| Conservation Tillage - 25% MT & 75% CT, Stable/Lower Soil P-100%;VBS (100%)  | 3,254             |  |  |  |
| MT = mulch tillage;VBS = vegetative buffer strips; CT = conventional tillage |                   |  |  |  |

From: Poster by Laura Blake and Sandra Brown of The Cadmus Group, Inc. and others 2007.

Simulated Phosphorus Load Reductions and Estimated Costs Associated with Implementing the Optimal Scenario of Agricultural BMPs

| Agricultural BMP Scenarios                                                                      | Total P (kg) | % Total P<br>Reduced | Total Cost<br>(\$) | Average Cost per<br>kg of Phosphorus<br>Reduced (\$) |
|-------------------------------------------------------------------------------------------------|--------------|----------------------|--------------------|------------------------------------------------------|
| Baseline 2004 Conditions                                                                        | 147,900      |                      |                    |                                                      |
| <ol> <li>Nutrient Management - Dairy P Feed Ration:<br/>Reduce by 25%; Implement 90%</li> </ol> | 140,600      | 4.9%                 | \$0                | \$0.00                                               |
| <ol> <li>Plus: Increase manure incorporation from<br/>50% to 85%</li> </ol>                     | 133,800      | 9.5%                 | \$393,907          | \$27.94                                              |
| 3. Plus: Stabilize Soil P (90% implementation)                                                  | 125,300      | 15.3%                | \$1,645,710        | \$72.82                                              |
| <ol> <li>Plus: Conservation Tillage - CT40%, MT45%,<br/>NT15%</li> </ol>                        | 115,100      | 22.1%                | \$2,730,621        | \$83.25                                              |
| <ol><li>Plus: Cover Crops on corn silage and some<br/>soybean fields</li></ol>                  | 111,600      | 24.5%                | \$2,730,621        | \$75.22                                              |
| 6. Plus: Buffer Strips installed on 100% of 1:24k<br>hydrology streams                          | 107,600      | 27.2%                | \$2,730,621        | \$67.76                                              |
| 7. Plus: Reduce Soil P to 25 ppm;<br>Implementation = 35%                                       | 100,600      | 32.0%                | \$5,900,796        | \$124.75                                             |
| 8. Plus: Biofuel Switch grass crop; 7% of all total crop acres                                  | 97,700       | 33.9%                | \$6,929,204        | \$138.03                                             |

From: Poster by Laura Blake and Sandra Brown of The Cadmus Group, Inc. and others 2007.