Source Allocation of Suspended Sediment and Phosphorus Loads to Green Bay from the Lower Fox River Sub-basin Using the Soil and Water Assessment Tool (SWAT)

Paul Baumgart University of Wisconsin – Green Bay Lower Fox River Watershed Monitoring Project – <u>www.uwgb.edu/watershed</u>

Funded by the Oneida Nation of Wisconsin and Fox-Wolf Watershed Alliance

Lake Michigan: State of the Lake &

Great Lakes Beach Association Joint Conference

November 2005, Green Bay, Wisconsin

Full report: www.uwgb.edu/watershed/reports/LFox_Load-Allocation.pdf

Presentation Outline

Lower Fox River Sub-basin Description SWAT overview Modeling Methods and Inputs Calibration and Validation results Model Results: Simulated Phosphorus and Suspended Sediment Export from Sub-basin Allocation of P & Suspended Sediment Loads under Simulated Baseline Conditions **Alternative Management Scenarios: Results**

Primary objective

Utilize watershed simulations to support watershed load allocations and predict impact of sediment and phosphorus reduction strategies within Lower Fox River Sub-basin (1580 km^2)

Lower Fox River watersheds & subwatersheds

Lower Fox River Year 2000 Landuse and Land cover

Soil and Water Assessment Tool -SWAT

- USDA ARS model: J.G. Arnold, J.R. Williams, Temple Texas
- Applied modified version of SWAT 2000 code
- Continuous daily time step, river basin/watershed scale model ----- physically based
- Routes water, sediment, nutrients and pesticides to watershed and basin outlets
- Predict impacts of management on water, sediment and chemical yields
- Long-term simulations of many decades
- Tracks crop growth, tillage, fertilizer/manure application, nutrient cycling on a daily basis
- Daily inputs of climate data
- GIS > spreadsheet > SWAT 2000: to allow more flexible/complex management files

Modeled Simulations

1977-2000 climatic period

1992 landuse Baseline conditions

2000 landuse Baseline conditions

Alternative management scenarios 2000 & 2025-30 urban area doubles

Model Inputs – GIS layers

- Landuse land cover
 - WDNR Wiscland land cover 1992
 - Brown County, ECWRPC 2000 to 2001
 - Trends: above plus USGS 1:24k topographic maps
- Soils County SSURGO
 - sub-watershed area-weighted averages
 - 5 4 soil layers
 - AWC, bulk density, sat. cond, K, hydro-group, etc
- Slope 30 m Digital Elevation Model
- Watershed boundaries WDNR, USGS, BLRPC
- WNDR Stream hydrology 1:24k, Brown County Buffers
- PC ARC-INFO, ARCVIEW, Spatial Analyst (ESRI)
- Climate: 1976-2000 daily, 3 primary stations,
 Plus 3 USGS stations in primary calibration watershed
 Upper Bower Creek (36 km²) main calibration site
 Point source loads from WDNR

Primary Hydrologic Response Units

- Agriculture Dairy (2000 6 year crop rotation of corn-grain, corn-silage, soybean, 3 years of alfalfa)
 - 1 Conventional tillage practice
 - 2 Mulch-till (>30%)
 - 3 No-till
 - 4 Barnyards
- Agriculture Cash crop (2000 1 yr corn, 1 yr soybean)
 - 5 Conventional tillage practice
 - 6 Mulch-till (>30%)
 - 7 No-till
- 👌 Non-Agricultural
 - 8 Urban
 - 9 Grassland
 - 10 Forest
 - 11 Wetland
 - 12 Golf course
 - 13 Barren

Agricultural HRU's

- Percent crops in subwatersheds derived from WISCLAND land cover
 - a) adjusted to fit 1992-93 and 2000-01 Wisc. Ag. Statistics in counties
 - b) Dairy rotation HRU's and Cash Crop rotation HRU's
- Crop Rotation phase altered: 1 HRU for each phase (6 dairy, 2 cash crop in year 2000 scenarios)
- Residue Level/Tillage Practices: NRCS & County Transect Survey 1996/1999/2000 data applied on watershed basis
 a) partitioned: conventional till (CT), mulch till (MT) and no-till (NT)
 b) further separated into dairy and cash crop
 c) constructed SWAT dairy and cash crop management files
- Crop Yields Calibrated (Wisconsin Ag. Stats for Brown County)
- Barnyard loads SWAT simulations calibrated to BARNY phosphorus loads
- Manure and Fertilizer Inputs

Modeling Urban Areas

 Urban landuses lumped together into single urban HRU (medium density residential)

 Impervious surfaces modeled with buildup/washoff option (similar to SWMM)

 Pervious surfaces modeled as lawn grass with fertilizer applied

SWAT buildup/washoff and management routines calibrated to:
 USGS/WDNR monitoring of urban streams & storm sewers
 RUST/Earth Tech SLAMM modeling for City of Green Bay

Lower Fox River Year 2000 Landuse Trends 1954 to 2000, urbanization = 2.6%/year

Projected urban area doubles by 2025 to 2030

Point Source Phosphorus Loads

Annual loads obtained from the Wisc. Dept. of Natural Resources.

Primary Model Modifications

Evapotranspiration equations modified

- Water yield still low, so Hargreaves-Samini PET equation reduced by 0.81
- MUSLE Sediment equation modified to EPIC/APEX form, calibration simplified for suspended sediment loads
- C-factor equation separated into: (1) surface residue and (2) crop cover
- HRU's utilize sub-watershed channel length & area in MUSLE sediment equation
- NRCS curve numbers in management files altered automatically according to soil hydro group
- Other code fixes and modifications

Model Calibration & Assessment

- Calibrate: 1) flow 2) crop yields and nutrient levels 3) suspended sediment 4) phosphorus
- Validate/assess: flow, SS, P at different time and/or site
- Daily, event, monthly, annual, total basis
- Primary calibration/validation site: USGS/WDNR - Upper Bower Cr. (36 km²)
- Other sites:
 - USGS Upper East River @ Midway Rd. (122 km²)
 - USGS/Oneida Nation Duck Creek @ CTH FF (276 km²)
 - USGS East River in Green Bay (367 km²), loads only
- All primarily rural/agricultural landuse
- Compare simulated export to Green Bay to loads calculated by others

Calibration & Validation

Calibrate – Validate: Stream Flow Upper Bower Creek events

Untransformed: $R^2 = 0.80$, NSE = 0.80

Untransformed: $R^2 = 0.95$, NSE = 0.94 for n = 12, not ice-affected events

Calibrate Monthly **Stream flow Upper Bower** Creek R²=.87, NS=0.86

Validate Monthly **Stream flow Upper Bower** Creek R²=0.76, NS=0.76

Observed and simulated monthly stream flow - Upper Bower Creek. 1996-97 validation period. Precipitation from USGS weather stations is also shown.

Calibrate – Validate: Suspended Sediment Upper Bower Creek events

Untransformed: $R^2 = 0.96$, NSE = 0.95

Untransformed: $R^2 = 0.85$, NSE = 0.85

Calibration & Validation Summary

	Nash-Sutcliffe Coefficient of Efficiency Statistic										
			Flo	W		Suspended			Phosph	nosphorus	
		area				Sediment					
		(sq. km)	Cal.	Valid.		Cal. Valid.			Cal.	Valid.	
Event	Bower *	36	0.80	0.94		0.93	0.89		0.75	0.88	
Daily	East River @ Midway	122		0.74			***			***	
Daily/event	Duck at CTH FF	276	0.69d				***			0.68e	
Event	East River @ Monroe	376					0.87			0.54	
Monthly	Bower		0.86	0.76		0.91					
	East River @ Midway			0.92							
	Duck at CTH FF **		0.82	0.56							
Annual	Duck at CTH FF		0.76								
	Validation period: % d	lifferenc	e betw	<mark>een obs</mark>	erved	and sir	nulated	tot	als		
	Bower			-4.2%			4.3%			-9.1%	
	East River @ Midway			-10.5%							
	Duck at CTH FF **			-9.0%							
* Ice-affected events excluded from validation phase data sets											
**	Validation data excluded 7/8/2000 very localized extreme precipitation event over NOAA NWS site										
***	Most event loads generally corresponded closely with observed loads, but # of events small										

Model Assessment Summary

In general, a fairly good correspondence between simulated and observed stream flow and loads of phosphorus and suspended sediment (daily, event, monthly, annual, totals)
 Model response acceptable for predictive simulations in sub-basin

Model least able to predict flow and loads:

- from small events, which affected phosphorus loads most
- after prolonged dry periods
- during snow melt periods

 If possible, performance could be improved somewhat in N.E. Wisconsin if model could better respond to extreme conditions and small events

 Current LFRWMP monitoring project will greatly assist in improving and/or validating model (5 watersheds)

Model Results – Year 2000 Baseline Conditions

Stream flow and loads at sub-basin, watershed and sub-watershed scales

Total, and by HRU/landuse category

Examples of modeled output

Lower Fox River Watershed

Simulated Subwatershed Phosphorus Yield (kg/ha)

Baseline 2000 conditions

Lower Fox River Watershed

Simulated Subwatershed Suspended Sediment Yield (t/ha)

Baseline 2000 conditions

Output Example: non-point export to watershed outlets and lower Green Bay

Table 10-1. Simulated average annual suspended sediment and phosphorus non-pointsource loadsfrom watersheds in the Lower Fox River Subbasin.

		Routed to Watershed Outlet					Routed to Lower Green Bay				
		TSS	Sed-P	Sol-P	Total P		TSS	Sed-P	Sol-P	Total P	
	Area	(ton)	(kg)	(kg)	(kg)		(ton)	(kg)	(kg)	(kg)	
	(sq. km)	(t/ha)	(kg/ha)	(kg/ha)	(kg/ha)		(t/ha)	(kg/ha)	(kg/ha)	(kg/ha)	
		1977-2000 Annual Average - Baseline 2000 Scenario									
LF01	372.9	14,500	14,600	20,200	34,900		14,500	14,600	20,200	34,900	
East River		(0.39)	(0.39)	(0.54)	(0.94)		(0.39)	(0.39)	(0.54)	(0.94)	
LF02	291.0	9,700	12,300	15,500	27,900		9,000	11,400	15,500	26,900	
Apple, Dutchman	, Ash.	(0.33)	(0.42)	(0.53)	(0.96)		(0.31)	(0.39)	(0.53)	(0.92)	
LF03	213.5	12,000	14,500	14,100	28,600		10,900	13,100	14,100	27,200	
Plum, Kankapot,	Garners	(0.56)	(0.68)	(0.66)	(1.34)		(0.51)	(0.61)	(0.66)	(1.27)	
LF04	98.0	3,800	3,800	3,600	7,400		3,500	3,400	3,600	7,000	
Fox River, Mud C	r.	(0.39)	(0.39)	(0.37)	(0.76)		(0.36)	(0.35)	(0.37)	(0.71)	
LF05	389.2	7,800	7,600	18,300	26,000		7,800	7,600	18,300	26,000	
Duck Creek		(0.20)	(0.20)	(0.47)	(0.67)		(0.20)	(0.20)	(0.47)	(0.67)	
LF06	106.6	4,000	3,900	4,600	8,600		3,600	3,500	4,600	8,100	
LLBDM, Neenah	Slough	(0.38)	(0.37)	(0.43)	(0.81)		(0.34)	(0.33)	(0.43)	(0.76)	
LFM	83.4	3,600	3,300	3,200	6,500		3,400	3,100	3,200	6,300	
L. Fox Main Channel		(0.43)	(0.40)	(0.38)	(0.78)		(0.41)	(0.37)	(0.38)	(0.76)	
Lower Fox	1554.6	55,400	60,000	79,500	139,900		52,700	56,700	79,500	136,400	
Subbasin		(0.36)	(0.39)	(0.51)	(0.90)		(0.34)	(0.36)	(0.51)	(0.88)	

 Table 10-4.
 Lower Fox River Subbasin simulated phosphorus loads by subwatershed for each landuse type (kg/year).
 Baseline 2000 Scenario - as routed to subwatershed outlet.

Irbaniza

TOTAL

Vield (ka/ba)

Subw

LF01-1	1,102	104	89	44	15	5	7	16	37	1,418	1.15
LF01-2	1.402	96	81	48	35	1	4	75	28	1.770	1.44
L E01-3	3 /51	20/	07	29	<u></u>	3	19	.0	16	3 088	1.25
	4 050	234	31	30	41		10	0	40	3,300	1.20
	1,858	152	60	18		5	111	0	54	2,290	1.20
LF01-5	471	37	8	7	7	24	7	0	3	562	0.68
LF01-6	2,675	212	72	37	55	2	22	0	24	3,098	1.26
LF01-7	1,505	151	18	27	17	31	42	0	7	1,798	1.07
L E01-8	21	0	588	1	6	0	0	0	64	680	0.67
L E01_0	100	15	704		14	0	4	10	104	000	0.57
LFUI-9	122	15	701	3	14	8	1	13	121	998	0.5/
LF01-10	0	0	55	0	0	0	0	0	0	55	0.44
LF01-11	998	59	158	8	42	2	28	52	61	1,409	0.97
LF01-12	3,029	289	154	71	31	54	20	11	86	3,747	0.87
L F01-13	3 368	305	891	26	58	Q	311	140	400	5 508	1.00
L E01 14	2,000	165		20	10				4.4	2,000	1.00
	2,131	105	33		10		20	0	14	2,399	1.30
LF01-15	4,207	569	104	49	26	1	59	0	45	5,067	1.41
LF01-16	2,486	219	583	42	63	8	221	0	294	3,917	1.05
LF01-17	489	43	608	5	15	1	9	0	201	1,371	0.85
LF02-1	2,001	199	172	24	16	3	12	82	80	2,589	1.17
L F02-2	2 834	261	518	12	31	9	10	0	200	3 875	1 13
L E02-2	2,004	201	100		10	4	10	60	200	3 222	1.1.0
LF02-3	2,025	200	130	20	12	4	18	00	11	3,222	1.14
LF02-4	3,942	220	953	33	35	10	93	0	416	5,701	1.07
LF02-5	1,598	105	732	79	32	5	3	0	230	2,784	0.81
LF02-6	3,371	235	224	36	31	2	14	1	121	4,035	0.98
LF02-7	171	17	1.024	35	22	8	4	0	170	1.452	0.62
L F02-8	1 506	160	461	50	21	1	12	53	100	2 466	0.89
1 502 0	0.455	100	101		40	4	12		130	2,700	0.00
LF02-9	2,155	193	39	20	18	4	83	0	22	2,534	0.96
LF03-1	1,380	73	78	9	59	0	14	0	45	1,658	1.36
LF03-2	5,283	338	108	25	30	1	87	63	41	5,977	1.78
LF03-3	2,801	208	62	14	15	2	84	0	28	3,214	1.51
LF03-4	3.083	262	13	37	24	3	74	0	6	3.502	1.39
L F03-5	10		207		7	0	<u>۱</u> ۹	0	13	/67	0.79
1 03-3	6.000	474		0	1	0	111	0	43	407	0.75
LF03-6	6,029	4/1	93	47	24	9	141	0	47	6,861	1.55
LF03-7	2,164	154	0	28	6	41	51	0	0	2,444	1.52
LF03-8	1,900	100	951	17	15	6	77	0	283	3,349	1.18
LF03-9	0	0	1.138	0	4	0	16	78	70	1.307	0.65
L F03-10	677	35	127	2	25	3	7	48	41	965	1 48
1 504 1	807		1 1/2	24	20		10	07	257	2 762	0.71
	027	00	1,443	24	20	3	18	92	20/	2,703	0.71
LF04-2	1,407	120	631	46	23	8	157	0	219	2,611	0.95
LF04-3	162	2	391	6	5	0	41	0	12	619	0.72
LF04-4	100	1	1,206	5	6	0	26	0	41	1,386	0.60
LF05-1	218	4	331	1	12	31	10	0	180	787	0.61
L F05-2	8	0	850	3	1/	11	1	1	83	960	0.52
1 505 2	6		100		14	10	10		10	272	0.52
LF03-3	0	0	190	0	4	10	19	0	43	212	0.59
LF05-4	987	42	589	3	37	13	20	74	282	2,048	0.72
LF05-5	78	1	381	10	12	3	0	136	144	766	0.69
LF05-6	1,575	105	395	17	48	54	27	65	220	2,507	0.64
LF05-7	530	30	130	21	38	11	20	43	78	900	0.68
L E05-8	1 306	82	102	23	26	 a	6/	.0	0/	1 707	0.93
	1,000	40	E0	15	20				20	1 102	0.70
LF03-9	900	40		15	34	25	2	0	29	1,103	0.72
LF05-10	2,598	158	64	46	39	30	26	0	34	2,995	0.85
LF05-11	854	58	31	7	7	4	26	0	16	1,002	0.96
LF05-12	3,517	221	155	43	79	32	46	0	82	4,176	0.79
LF05-13	5 670	371	407	87	39	25	269	57	170	7 095	1.29
L E05-14	4 774	316	175	70	2/	52	15		.10	5 500	1 12
1 505 45	4,774	510	1/3	10	24	33	10	0	03	3,309	0.12
LF05-15	/	0	0	0	2	87	0	0	0	97	0.13
LF05-16	1,758	124	33	30	9	6	1	0	14	1,976	1.24
LF06-1	896	97	829	24	17	10	38	58	186	2,156	0.79
LF06-2	58	1	754	1	4	1	1	24	90	935	0.55
L E06-3	3 21 8	202	362	11	11	33	105		200	4 386	1.06
1 506-4	3,210	232	002			- 32	190		110	1 1 70	0.57
LF00-4		0	995	0			50	0	119	1,178	0.57
LFM1-1	968	165	256	5	7	0	4	0	70	1,477	1.57
LFM1-2	1,127	38	311	45	20	2	7	0	125	1,676	1.10
LFM1-3	179	8	501	13	5	0	1	0	70	776	0.76
I FM1-4	23	0	1 176	Q	10	0	1	0	43	1 261	0.57
L FM1-5	16	0	1 026		30	22	۱ ۸	0	216	1 21/	0.50
	100 601	0 200	25 404	1 5 47	JZ	23	0 760	4 040	210	1,314	1.00
10141	106 621	8 368	25.404	1.547	1.509	/68	2.768	1.749	n //7	155 012	1 00

Output Example: subwatershed phosphorus loads by source

Phosphorus Load Allocation to Lower Green Bay (kg/year)

Suspended Sediment Allocation to Lower Green Bay (metric tons/year)

Alternative Management Scenarios

Lower Fox Subbasin Non-Pt. Phosphorus Load to Lower Green Bay (metric ton/yr)

BASELINE 2000 CONDITIONS COW #'s Increase by 15% Decrease alfalfa acres 33%, & increase row crops NUTRIENT MANAGEMENT: Soil P stable at 40 ppm Nutrient Management: Soil P stable at 25 ppm VEG. BUFFER - 100% of 1:24k hydrology streams VBS's - 100% of 1:24k streams & road ditches CONSERVATION TILLAGE ------100% NT Cons. Till - 100% NT, incorporate ALL manure Cons. Till - CT10%, MT60%, NT30% inc. manure DAIRY PHOSPHORUS feed ration reduced by 25% COMPOSTING Facility: 20% of manure displaced ROTATIONAL GRAZING, 40% of dairy farms adopt Rotational Grazing, 100% of ALL farms adopt URBAN AREA DOUBLES, current BMP's ~2025-30 Urban area doubles, BMP Conservative estimate Urban area doubles, BMP Optimistic estimate FORESTED, over Entire Subbasin

Conclusions

Overall, model performed reasonably well during calibration and validation periods Simulated P export to Green Bay close to loads estimated by V. Klump et al. (1997) D. Robertson (2004)Substantial variation among watershed yields was simulated within the sub-basin Relatively wide range in simulated P and SS reductions from alternative scenarios Greatest simulated P and SS Ag. reductions: intensive rotational grazing, followed by: Conservation tillage 2. Nutrient management 3. Simulated reductions from urban area doubling highly dependent on assumed P and TSS export from urban areas

Questions?

Email: baumgarp@uwgb.edu Full report: <u>www.uwgb.edu/watershed/reports/</u> LFox_Load-Allocation.pdf