

# Mechanical Engineering Technology | 2017-2018 Assessment

### Report

1. Please give a brief overview of the assessment data you collected this year.

#### ABET Criterion 3 Student Learning Outcomes (time of graduation) with ours under the applicable one

- a. An ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly defined engineering technology activities
- b. An ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies
- c. An ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes
- d. An ability to design systems , components, or processes for broadly defined engineering technology problems appropriate to program educational outcomes
- e. An ability to function effectively as a member or leader on a technical team
- f. An ability to identify, analyze, and solve broadly defined engineering technology problems
- g. An ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature
- h. An understanding of the need for and an ability to engage in self-directed continuing professional development
- i. An understanding of and a commitment to address professional and ethical responsibilities including a respect for diversity
- j. A knowledge of the impact of engineering technology solutions in a societal and global context
- k. Commitment to quality, timeliness, and continuous improvement

#### Fall 2017 Assessment

Course: ENGR 213 Engineering Mechanics I – Fall 2017 Outcomes assessed: j

Outcome j states that a student will demonstrate

A knowledge of the impact of engineering technology solutions in a societal and global context.

The following assignment was used to assess outcome j and the assessment rubric is provided below with the percent and (number) of students who achieved unsatisfactory, developing, satisfactory, or exemplary for each item in the rubric.

Paper: Chose a modern engineering innovation and write a 8-10 page paper (double spaced, font size 11 or 12) answering the following

- 1. Describe the problem that the innovation was seeking to solve.
- 2. Investigate and describe what constituencies (people, the environment, companies, etc) benefitted from the innovation and how they benefitted. Consider this on a global scale.
- 3. Investigate and describe what constituencies were negatively impacted by the innovation and how they were impacted.
- 4. Describe relationships and potential outcomes between affected constituencies
- 5. Based on the above, assess the solution on a global scale

## Assessment was performed using the rubric below. In each category the percentage and (number) of students achieving each criteria is reported.

| n = 19 students                                                             | Unsatisfactory                                                                       | Developing                                                                               | Satisfactory                                                                                                        | Exemplary                                                                                                                                  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Describes the<br>project and its<br>purpose<br>Investigates and             | Fails to define<br>problem or<br>describe its<br>purpose<br>(0)<br>Fails to describe | Gives little<br>information about<br>project and<br>purpose<br>(0)<br>Identifies one     | Adequately<br>describes project<br>and purpose from<br>one perspective<br><b>42.1% (8)</b><br>Identifies/discusses  | Thoroughly describes project<br>and purpose from more than<br>one perspective<br><b>57.9% (11)</b><br>Thoroughly assesses multiple         |
| discusses what<br>entities will<br>benefit and how                          | what entities will<br>benefit or how<br>they will benefit                            | benefit and which<br>entity benefits<br><b>15.8%(3)</b>                                  | two to three<br>benefits; local<br>recipient entities;<br>and the nature of<br>the benefits                         | benefits and recipients and<br>the nature of the benefit<br>both locally and globally<br>21.0%, (4)                                        |
|                                                                             |                                                                                      |                                                                                          | 63.2%%, (12)                                                                                                        | <b></b>                                                                                                                                    |
| Investigates and<br>discusses what<br>entities will suffer<br>and how       | Fails to describe<br>what entities will<br>suffer or how they<br>will suffer         | Identifies one<br>negative outcome<br>and the recipient<br>entity                        | Identifies/discusses<br>two to three<br>negative outcomes,<br>local recipient<br>entities; and the                  | Thoroughly assess multiple<br>negative outcomes and<br>recipients and the nature of<br>the outcome locally and<br>globally                 |
|                                                                             | 5.3% (1)                                                                             | 36.8% (7)                                                                                | nature of the<br>negative outcome<br><b>36.8%, (7)</b>                                                              | 21.1%, (4)                                                                                                                                 |
| Describes realistic<br>potential<br>outcomes<br>between affected<br>parties | Fails to describe<br>relationships or<br>outcomes<br>between affected<br>groups      | Hypothesizes<br>some outcomes,<br>but fails to<br>consider if they<br>are realistic      | Identifies at least<br>one potential<br>realistic outcome in<br>the context of<br>relationships<br>between entities | Thoroughly discusses from<br>more than one perspective<br>realistic outcomes in the<br>context of relationships<br>between affected groups |
|                                                                             | 36.8%, (7)                                                                           | 21.1%, (4)                                                                               | 36.8%, (7)                                                                                                          | 5.3%, (1)                                                                                                                                  |
| Assess and discuss global precedents                                        | Makes no<br>assessment<br>15.8% (3)                                                  | Makes some<br>assessment but<br>fails to consider<br>global precedents                   | Assesses based on<br>one perspective and<br>considers global<br>precedents from this<br>perspective                 | Gives thorough assessment<br>based on multiple<br>perspectives and discusses<br>global precedents from<br>multiple perspectives            |
|                                                                             | 10.070 (0)                                                                           | 47.4%, (9)                                                                               | 26.3%, (5)                                                                                                          | 10.5%, (2)                                                                                                                                 |
| Paper is well<br>organized with<br>correct spelling<br>and grammar          | Little organization<br>and multiple<br>grammar/spelling<br>errors per page           | Paper has some<br>inconsistent<br>organization and 2<br>to 3 spelling/<br>grammar errors | Paper is organized<br>with no more than 1<br>spelling/grammar<br>error per page                                     | Paper is well organized and<br>only 5 or fewer<br>spelling/grammar errors in<br>entire paper                                               |
|                                                                             | 5.3%, (1)                                                                            | per page<br>52.6%, (10)                                                                  | 31.6%, (6)                                                                                                          | 10.5%, (2)                                                                                                                                 |

#### Continuous improvement:

#### ENGR 213: Outcome j

Engineering students often have difficulty with basic grammar and spelling as is evidenced by the summary assessment. In Fall 2015 I allowed them to turn in a first draft for me to proofread before handing in the final paper, but only two students took advantage of this. In 2016, they were encouraged to use the campus Writing Center, but clearly did not. In Fall 2018, a first draft will be required. Students did not follow all directions for components needed for the paper – several simply wrote reports on new technologies. In Fall 2018, I will emphasize exactly what is expected and require a first draft to make sure they are not simply describing a new technology, but including a thorough analysis of its impact.

ENGR 213 also meets the University requirement for a Writing Emphasis general education learning outcome. The above paper was also graded for writing emphasis using the rubric below.

Assessment for the second criteria, writing emphasis, was performed using the rubric below. In each category the percentage and (number) of students achieving each criteria is reported.

| n = 19 students                                         | Unsatisfactory                                                           | Developing                                                                                         | Satisfactory                                                                                                 | Exemplary                                                                                                                |
|---------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Topic is thoroughly<br>researched and<br>properly cited | Topic is not<br>researched much<br>beyond given<br>information           | One or two<br>appropriate<br>references are used<br>and cited                                      | Three or four<br>appropriate<br>references are used<br>and cited<br>(5) 26.3%                                | Topic is thoroughly<br>researched from<br>multiple (5 or more)<br>sources and is well<br>cited<br>73.7%, (14)            |
| Paper is well<br>organized                              | Paper is not<br>organized at all                                         | Paper has some<br>organization, but<br>inconsistent<br>10.5%, (2)                                  | Paper is organized<br>according to the<br>questions asked, but<br>not well organized<br>overall<br>(4) 21.1% | Paper is organized<br>according to topics<br>and overall into an<br>easy to follow flow of<br>information<br>68.4%, (13) |
| Correct grammar and<br>spelling are used<br>throughout  | Grammar and<br>spelling are poor –<br>many errors per page<br>15.7%, (3) | Grammar and<br>spelling are<br>marginally<br>acceptable – 2 to 3<br>errors per page<br>57.9%, (11) | Grammar and<br>spelling are good –<br>no more than one<br>error per page<br>21.1%, (4)                       | Grammar and<br>spelling are near<br>perfect – no more<br>than 3 errors in<br>entire paper<br>5.3%, (1)                   |
| Tables and figures illustrate concepts                  | No tables or figures<br>are provided<br>42.1%, (8)                       | One figure or table is<br>given – a map of area<br>5.3%, (1)                                       | Tables and figures<br>illustrate some<br>concepts<br>31.6%, (6)                                              | Tables and figures<br>completely support<br>the text<br>21.0%, (4)                                                       |

#### Continuous improvement:

Students remain fairly poor writers. They were provided information on the campus Writing Center to help them, but it would appear that many did not take advantage of this. After Fall 2016, I said that I would require an early draft, but I did not do this in favor of sending them to the writing center. In Fall 2018, an early draft will be required.

#### Fall 17 and Spring 18 ET 400 Combined Assessment

#### ABET learning outcomes assessed: c, g, h, k

UWGB general education outcome assessed: Writing Emphasis (WE)

## Rather than separate out mechanical from electrical or environmental engineering technology students, assessment was performed on all students with a single set of results.

ET 400 is the course assigned to the Engineering Technology internship. In addition to completing a minimum of a summer or semester long internship with a company in the appropriate field (electrical, environmental, mechanical engineering technology), each student will write a term paper documenting their experience and give an oral presentation at the end of the term. The course grade is based on evaluation by the internship supervisor, the written paper, and the presentation. ABET learning outcomes, specific assignments used to assess each one, and assessment rubrics are discussed below.

#### Criteria for the term paper are as follows:

#### Internship Experience Report:

At the end of the internship semester, each student will write a 12 to 20 page paper (double spaced) detailing their experience. The paper should follow the outline below and include all of the information in the outline.

- 1. Describe the company, what products it makes, what the markets are for the products.
- 2. Describe the manufacturing process. Include applicable graphics to explain.
- 3. Describe your position with the company including responsibilities.
- 4. Describe projects that you worked on including the goals of the projects, any experiments or design work applied to the project; methods for measurements and analysis of measurements taken; results of any experiments or design work; and how processes were improved as a result
- 5. Discuss skills attained relevant to both engineering technology and a future professional career
- 6. Describe any opportunities for additional training/professional development and what skills were learned

This paper will also be used to assess the Writing Emphasis requirement of the course

**ABET outcome c** states that the student will demonstrate: An ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes

This outcome was assessed by both Prof. Patricia Terry and each student's internship supervisor. Prof. Terry obtained the internship supervisor's assessment via a phone conversation if an electronic copy of the evaluation was not completed. The assessment rubric and a summary of the results are given below.

#### Assessment Rubric for ABET c: Assessment by Prof. Terry (Assessed primarily from the paper)

| N = 22                                                                                     | Unsatisfactory                                                                     | Developing                                                                                                | Satisfactory                                                                                                  | Exemplary                                                                                                                                        |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Describe the<br>purpose of<br>measurements/<br>experimentation<br>in context of<br>process | Description not<br>adequate to<br>explain what is<br>being performed<br>or why     | Gives some<br>information about<br>the tests/<br>measurements<br>(2) 9.1%                                 | Adequately<br>describes<br>tests/Measurements<br>and why they are<br>performed<br>72.7% (16)                  | Comprehensive<br>description of<br>tests/measurements in<br>the context of the<br>overall process<br>18.2% (4)                                   |
| Properly conducts<br>tests and collects<br>data                                            | Fails to apply<br>correct scientific<br>method such that<br>data is<br>meaningless | Conducts tests<br>with only minor<br>errors and records<br>inputs and outputs                             | Conducts tests using<br>scientific methods<br>and records inputs<br>and outputs<br>77.7% (17)                 | Conducts tests using<br>scientific methods and<br>records data on all<br>process parameters that<br>might be affected<br>22.7% (5)               |
| Analyze data and interpret results                                                         | Fails to apply<br>appropriate<br>models for analysis                               | Applies at least<br>one model with no<br>significant errors<br>and interprets<br>results based on<br>this | Applies correct<br>models to analyze<br>data and interprets<br>results specific to the<br>tests<br>68.2% (15) | Applies all correct<br>models to data analysis<br>and interprets results in<br>the context of the entire<br>process<br>31.8% (7)                 |
| Apply analysis for<br>process<br>improvement                                               | Makes incorrect<br>changes to process                                              | Makes process<br>changes based on<br>single model                                                         | Correctly applies<br>analysis to process<br>changes<br>45.5% (10)                                             | Correctly applies<br>analysis to process<br>changes and documents<br>improvement<br>54.5% (12)                                                   |
| Document process<br>improvement                                                            | Fails to document results                                                          | Provides minimal<br>documentation of<br>process<br>improvement<br>(2) 9.1%                                | Document results of<br>process<br>improvement in a<br>manner that allows<br>replication<br>45.5% (10)         | Documents results of<br>process improvement in<br>a manner that allows<br>replication and suggests<br>further<br>tests/experiments<br>45.4% (10) |

#### Assessment Rubric for ABET c: Summary of internship supervisor reports

| N = 22                                                                                     | Unsatisfactory                                                                     | Developing                                                                                                | Satisfactory                                                                                                 | Exemplary                                                                                                                                       |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Describe the<br>purpose of<br>measurements/<br>experimentation<br>in context of<br>process | Description not<br>adequate to<br>explain what is<br>being performed<br>or why     | Gives some<br>information about<br>the tests/<br>measurements                                             | Adequately<br>describes tests/<br>Measurements and<br>why they are<br>performed<br>45.5% (10)                | Comprehensive<br>description of tests/<br>measurements in the<br>context of the overall<br>process<br>54.5% (12)                                |
| Properly conducts<br>tests and collects<br>data                                            | Fails to apply<br>correct scientific<br>method such that<br>data is<br>meaningless | Conducts tests<br>with only minor<br>errors and records<br>inputs and outputs<br>(1)4.5%                  | Conducts tests using<br>scientific methods<br>and records inputs<br>and outputs<br>(11) 50%                  | Conducts tests using<br>scientific methods and<br>records data on all<br>process parameters that<br>might be affected<br>45.5% (10)             |
| Analyze data and interpret results                                                         | Fails to apply<br>appropriate<br>models for analysis                               | Applies at least<br>one model with no<br>significant errors<br>and interprets<br>results based on<br>this | Applies correct<br>models to analyze<br>data and interprets<br>results specific to the<br>tests<br>36.4% (8) | Applies all correct<br>models to data analysis<br>and interprets results in<br>the context of the entire<br>process<br>63.6% (14)               |
| Apply analysis for<br>process<br>improvement                                               | Makes incorrect<br>changes to process                                              | Makes process<br>changes based on<br>single model<br>(1)4.5%                                              | Correctly applies<br>analysis to process<br>changes<br>(10) 45.5%                                            | Correctly applies<br>analysis to process<br>changes and documents<br>improvement<br>50% (11)                                                    |
| Document process<br>improvement                                                            | Fails to document<br>results                                                       | Provides minimal<br>documentation of<br>process<br>improvement                                            | Document results of<br>process<br>improvement in a<br>manner that allows<br>replication<br>59.1% (13)        | Documents results of<br>process improvement in<br>a manner that allows<br>replication and suggests<br>further<br>tests/experiments<br>40.9% (9) |

**ABET outcome g** states that the student will demonstrate: An ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature

The term paper was used to assess the written and graphical communication components of g: with rubric and summary of results below. Assessment performed by Prof. Terry.

| N = 22                                                                     | Unsatisfactory                                                                    | Developing                                                                                            | Satisfactory                                                                                          | Exemplary                                                                                        |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Written<br>articulation of<br>experience                                   | Fails to articulate<br>experience at all                                          | Text rambles,<br>repeated reading<br>needed to<br>understand, key<br>points not<br>organized (1) 4.5% | Articulates<br>experience, but<br>writing is somewhat<br>difficult to follow<br>(11) 50%              | Articulates experience clearly<br>and concisely<br>45.5% (10)                                    |
| Written<br>organization                                                    | Little to no<br>structure or<br>organization is<br>used                           | Some structure<br>and organization is<br>used                                                         | Generally well<br>organized, but some<br>sections not clearly<br>identified<br>40.9% (9)              | Organized in a logical<br>sequence to enhance<br>readers' comprehension<br>59.1% (13)            |
| Professionally<br>written to<br>audience<br>(professor and<br>supervisors) | Writing style is<br>inappropriate for<br>the audience and<br>the assignment       | Style is informal or<br>inappropriate to<br>audience<br>(3) 13.7%                                     | Usually uses<br>professional,<br>scientific writing<br>style appropriate to<br>audience<br>54.5% (12) | Uses excellent professional,<br>scientific writing style to<br>appropriate audience<br>31.8% (7) |
| Quality of written<br>work                                                 | Work is not<br>presented neatly;<br>many spelling/<br>grammar errors<br>(4) 18.2% | Work has more<br>than 3 spelling or<br>grammar errors<br>per page; is<br>somewhat messy<br>27.3% (6)  | Work is presented<br>neatly with few<br>grammar or spelling<br>errors<br>54.5% (12)                   | Work is presented neatly;<br>grammar and spelling are<br>correct<br>33% (1)                      |
| Use of graphics:<br>tables/graphs/<br>figures                              | No graphics are<br>used<br>(1) 4.5%                                               | Graphics are<br>presented, but<br>flawed                                                              | Use of graphics is<br>appropriate and<br>usually in the correct<br>format<br>(6) 27.3%                | Use of graphics is<br>appropriate and all are in<br>proper format<br>68.2% (15)                  |

Assessment Rubric for ABET g (oral): Each student gave a 12-15 minute presentation of their work and answered audience questions. The ET 101 class was the audience.

| N = 22                                        | Unsatisfactory                                                                        | Developing                                                                                                | Satisfactory                                                                              | Exemplary                                                                                                 |
|-----------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Oral articulation of experience               | Fails to articulate<br>experience at all                                              | Speaker rambles,<br>key points not<br>organized                                                           | Articulates<br>experience but<br>somewhat difficult<br>to follow<br>(3) 13.6%             | Articulates experience clearly<br>and concisely<br>86.4% (19)                                             |
| Presentation<br>organization                  | Little to no<br>structure or<br>organization is<br>used                               | Some structure<br>and organization is<br>used                                                             | Generally well<br>organized<br>27.3% (6)                                                  | Organized in a logical<br>sequence to enhance<br>comprehension<br>72.7% (16)                              |
| Presentation<br>quality                       | Student not<br>prepared,<br>presentation not<br>appropriate                           | Style is informal or<br>inappropriate to<br>audience                                                      | Student mostly<br>prepared;<br>presentation is<br>appropriate to<br>audience<br>40.9% (9) | Student very well prepared,<br>knowledgeable;<br>presentation is appropriate<br>to audience<br>59.1% (13) |
| Use of graphics:<br>tables/graphs/<br>figures | No graphics are<br>used                                                               | Graphics are<br>presented, but<br>flawed                                                                  | Use of graphics is<br>appropriate and<br>usually in the correct<br>format<br>18.2% (4)    | Use of graphics is<br>appropriate and all are in<br>proper format<br>81.8% (18)                           |
| Stays within time<br>limits                   | Student goes<br>significantly over<br>time limit (more<br>than 6 minutes)<br>(2) 9.1% | Student goes a<br>little over time<br>limit (about 3-5<br>minutes) or<br>significantly under<br>18.2% (4) | Student is within 2<br>minutes of time limit<br>54.5% (12)                                | Presentation exactly meets<br>time requirement<br>18.2% (4)                                               |
| Answers questions                             | Student unable or<br>unwilling to<br>answer questions                                 | Student attempts<br>to answer<br>questions, but in a<br>rambling,<br>insufficient<br>manner               | Student answers<br>questions in an<br>acceptable manner<br>54.5% (12)                     | Student willingly and<br>concisely answers all<br>relevant questions<br>45.5% (10)                        |

**ABET outcome h** states that the student will demonstrate: An understanding of the need for and an ability to engage in self-directed continuing professional development

This outcome will be assessed both by the internship supervisor through interaction with the student and by Professor Terry through the internship report.

| N = 22                                                                                    | Unsatisfactory                                                             | Developing                                                             | Satisfactory                                                                    | Exemplary                                                                                         |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Student seeks<br>professional<br>development<br>opportunities<br>through internship       | Shows no interest<br>in opportunities<br>offered                           | Participates in<br>opportunities only<br>when required                 | Takes advantage of<br>opportunities<br>offered during<br>internship<br>50% (11) | Actively seeks opportunities<br>through internship<br>supervisor<br>50% (11)                      |
| Student seeks<br>professional<br>development<br>opportunities<br>outside of<br>internship | Participates in no<br>professional or<br>extra-curricular<br>organizations | Participates in<br>activities when<br>required by a class<br>(5) 22.7% | Takes advantage of<br>activities offered by<br>faculty<br>68.2% (15)            | Actively seeks opportunities<br>within professional societies<br>or campus activities<br>9.1% (2) |
| Has knowledge of<br>professional<br>societies                                             | Fails to identify or<br>join professional<br>societies                     | Identifies<br>professional<br>societies<br>(9) 40.9%                   | Joins professional<br>society<br>59.1% (13)                                     | Joins professional society<br>and actively engages on local<br>chapter                            |

#### Assessment Rubric for ABET h: Prof. Terry

**ABET outcome k** states that the student will demonstrate a: Commitment to quality, timeliness, and continuous improvement.

This outcome will be assessed by the internship field supervisor and sent to Professor Terry.

#### Assessment Rubric for ABET k:

| N = 22                                       | Unsatisfactory                                                                         | Developing                                                                                             | Satisfactory                                                                                          | Exemplary                                                                                                                           |
|----------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Demonstrates<br>reliability                  | Does not reliably<br>come to work on<br>agreed upon<br>schedule and<br>misses meetings | Misses more than<br>once a month<br>without an<br>acceptable reason;<br>occasionally<br>misses meeting | Rarely misses work<br>and gives<br>appropriate<br>notification; never<br>misses meetings<br>(5) 22.7% | Only misses work for<br>acceptable reasons and<br>notifies supervisor in a timely<br>manner; never misses<br>meetings<br>77.3% (17) |
| Demonstrates<br>commitment to<br>timeliness  | Often fails to<br>arrive on time to<br>work or meetings                                | Is late to work<br>more than once a<br>week or is late to<br>or meetings                               | Rarely arrives late<br>for work or meetings<br>18.2% (4)                                              | Always arrives to work or<br>meetings on time<br>81.8% (18)                                                                         |
| Demonstrates<br>commitment to<br>quality     | Quality of work is<br>unacceptable                                                     | Quality of work<br>needs significant<br>improvement                                                    | Quality meets<br>expectations for a<br>student intern<br>45.5%% (10)                                  | Quality significantly exceeds<br>expectations for a student<br>intern<br>54.5% (12)                                                 |
| Demonstrates<br>commitment to<br>improvement | Does not take<br>direction well;<br>ignores feedback                                   | Sometimes takes<br>direction well;<br>sometimes open<br>to feedback                                    | Usually takes<br>direction well;<br>usually incorporates<br>feedback into work<br>27.3% (6)           | Always takes direction well;<br>open to feedback and<br>incorporates into work<br>72.7% (16)                                        |
| Would you hire<br>this student?              | no                                                                                     | Possibly after<br>graduation if<br>significant growth<br>occurs                                        | Would consider for<br>an open position.<br>13.6% (3)                                                  | Absolutely, with no<br>reservations.<br>86.4% (19)                                                                                  |

This course also meets the UW-Green Bay general education learning outcome for Writing Emphasis

#### Assessment Rubric for Writing Emphasis: Term paper is assessed by Prof. Terry

| N = 22                                                 | Unsatisfactory                                                                  | Developing                                                                                       | Satisfactory                                                                                                 | Exemplary                                                                                                               |
|--------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Paper includes all<br>required<br>components           | Only two or three<br>components are<br>covered and not all<br>at adequate level | Most components<br>are included and<br>most are at adequate<br>level<br>(3) 13.6%                | Paper includes all<br>required<br>components<br>45.5% (10)                                                   | Paper gives thorough<br>description of all<br>components<br>40.9% 92)                                                   |
| Paper is well<br>organized                             | Paper is not<br>organized at all                                                | Paper has some<br>organization, but<br>inconsistent                                              | Paper is organized<br>according to the<br>questions asked, but<br>not well organized<br>overall<br>(8) 36.4% | Paper is organized<br>according to topics<br>and overall into an<br>easy to follow flow of<br>information<br>63.6% (14) |
| Correct grammar and<br>spelling are used<br>throughout | Grammar and<br>spelling are poor –<br>many errors per page<br>(4) 18.2%         | Grammar and<br>spelling are<br>marginally<br>acceptable – 2 to 3<br>errors per page<br>27.3% (6) | Grammar and<br>spelling are good –<br>no more than one<br>error per page<br>36.3% (8)                        | Grammar and<br>spelling are near<br>perfect – no more<br>than 3 errors in<br>entire paper<br>18.2% (4)                  |
| Tables and figures illustrate concepts                 | No tables or figures<br>are provided<br>(2) 9.1%                                | One figure or table is<br>given – a map of area                                                  | Tables and figures<br>illustrate some<br>concepts<br>59.1% (13)                                              | Tables and figures<br>completely support<br>the text<br>31.8% (7)                                                       |

#### Continuous improvement:

**ABET c**: Students generally did fine with ABET learning outcome c. Again, lab classes help students develop these skills, especially ET specific labs. More emphasis on quality lab reports may shift some students from the satisfactory to the exemplary mark. Two students scored "developing," but this was a much more representative pool than the first semester ET 400 ran. We need to make sure students have completed sufficient ET credits before doing an internship to make sure they know what is expected.

**ABET g Written and graphical communi**cation: As before, w students articulated their experiences in an organized paper, emphasis needs to be placed on correct grammar and punctuation. Faculty need to better emphasize the need for correct grammar and spelling and they should inform students of the Writing Center on campus to help students with these skills.

**ABET g oral communication**: Student presentations were for the most part very good. Almost one-third of students did need help staying within a set time limit. Perhaps a tutorial on presentation preparation would help with this. Presentations were well organized and students demonstrated knowledge of their companies and projects.

**ABET h:** UW-Green Bay students struggle a bit with continuing professional development. Most students carry a full academic load and work part time to pay tuition. This leaves little time for other activities. While students did take advantage of opportunities offered through employment and by faculty, many were not yet able to join professional societies. Time and expense were the biggest factors and these are difficult to overcome. Faculty will continue to encourage such activities and offer on campus activities.

**ABET k:** Internship supervisors gave high marks to all students, both through phone interview and written feedback. Many of the students (roughly 20) were hired by the companies that sponsored their internships. UW-Green bay students have the strong work ethic that this region is known for and tend, overall, to be reliable and hard working.

Writing Emphasis: As expected, students overall wrote well organized papers with required content, but grammar and spelling continue to be a challenge. We may need to consider a course specific to technical writing skills or, at least, spend some time in lower level courses emphasizing writing grammatically correct English. We also need to direct students to the campus Writing Center for help.

#### Spring 2018 Assessment

#### ET 118: Fluids 1

#### ABET Outcomes (c and f were assessed in this course.

The Engineering Technology Program must also satisfy the ABET Program Outcomes, which require a student to possess the following knowledge, skills, and attitudes (lower case letters are used to be consistent with ABET terminology). Not every Engineering Technology course is expected to meet every ABET Outcome.

- (c) An ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes;
- (f) An ability to identify, analyze, and solve broadly defined engineering technology problems;

#### ABET C was assessed via the following laboratory experiment on buoyancy.

Students worked in groups of 3-4 and rotated until each of the 4 sections was complete. They then completed a lab report that included:

Lab Introduction Procedures for each section Data and results from each section Sources of error Conclusions

#### Fluids Lab 4: Bouyancy

The buoyant force upward on a submerged object (Fb) due to the fluid in which the object is submerged is equal to the weight of the fluid displaced by the submerged object.

#### Theoretically, this means:

 $F_{b} = m_{\text{fluid}} g,$   $m_{\text{fluid}} = \rho_{\text{fluid}} V_{\text{displaced}}$   $\Rightarrow F_{b} = \rho_{\text{fluid}} V_{\text{displaced}} g$ 

 $\rho$  is the density of the fluid, V is the volume of the object that is submerged (if the object is completely submerged, the volume displaced is the volume of the entire object), *g* is acceleration due to gravity. This model for the buoyant forces is called **Archimedes' Principle**.

If you weigh an object while it is under water, you will find it weighs less than if it were in air. That is because when you weigh a submerged object, you are actually measuring the weight minus the buoyant force. If you do this with a mass scale, then the apparent mass,  $m_{apparent}$  (mass in the water), will be less than the actual mass,  $m_{actual}$  (mass in the air). The difference between the apparent mass and the actual mass will be due to the buoyant force on the object. Experimentally, this means:

#### $F_b = m_{actual}g - m_{apparent}g = (m_{actual} - m_{apparent})g$

If you use a spring scale that measures force directly, the buoyant force is the force on the object in air – force on the object when it is submerged in a fluid.

The buoyant force for objects like bottles or beakers that float can be determined in the same way using the apparatus shown below.



#### Figure 1. Measuring buoyancy of floating objects.

The buoyant force for objects that do not float (e.g., steel and aluminum) can be determined with the apparatus shown below. Note the only difference between the apparatus for floating objects and the apparatus for non-floating objects is the addition of the pulley.



Figure 2. Measuring buoyancy of non-floating objects.

#### Lab Tasks

#### Station 1 – Floating objects

- 1. Determine the buoyancy of objects that float in water by measuring the force of gravity on the objects in the air and submerged in water. Note that the volume of the milk jug is 3.84 L. The volume of the wood block should be determined by measuring the dimensions of the block. The volume of the Toilet Float should be determined by submerging the float in a beaker of water filled to the top, capturing the displaced water in a bucket, and measuring the volume of displaced water with a graduated cylinder.
  - a. Milk jug
  - b. Wood Block

| Object | Volume | Mass or Force in<br>Air | Mass or Force<br>Submerged | Buoyant force |
|--------|--------|-------------------------|----------------------------|---------------|
|        |        |                         |                            |               |
|        |        |                         |                            |               |

#### Station 2-

- 2. Determine the buoyant force required to displace a beaker to the 800 mL and 900 ml marks using the 10 g weights. Note you will have to add about 120g of weight in order for the beaker to stay upright as you add the rest of the weights. A mass balance is provided to determine the weight of the beaker.
  - a. One measurement each for all four groups.

| Object | Volume | Mass of Beaker in<br>Air | Mass Added to<br>Displace Beaker to<br>900 mL Mark | Buoyant fprce |
|--------|--------|--------------------------|----------------------------------------------------|---------------|
| Beaker | 800 mL |                          |                                                    |               |
|        | 900 ml |                          |                                                    |               |

#### Station 3 – Large, Non-Floating Objects

- Determine the buoyant force on objects that <u>do not</u> float in water by measuring the force of gravity on the objects in the air and submerged in water. The volume of the 2 kg and 5 kg weight can be determined by submerging the weights in a beaker of water filled to the top, capturing the displaced water in a bucket, and measuring the volume of displaced water with a graduated cylinder. Note: hold on to the weights when submerging in the beaker, so you don't drop the weight and break the beaker.
  - a. 2 kg weight.
  - b. 5 kg weight

| Object | Volume | Mass or Force in<br>Air | Mass or Force<br>Submerged | Buoyant Force |
|--------|--------|-------------------------|----------------------------|---------------|
|        |        |                         |                            |               |
|        |        |                         |                            |               |

#### Station 4 – Small, Non-Floating Objects

- 1. Determine the buoyant force on objects that <u>do not</u> float in water by measuring the force of gravity on the objects in the air and submerged in water.
  - a. All three groups aluminum, copper, and lead blocks

| Object         | Volume | Mass or Force in<br>Air | Mass or Force<br>Submerged | Buoyant Force |
|----------------|--------|-------------------------|----------------------------|---------------|
| Aluminum Block |        |                         |                            |               |
| Copper Block   |        |                         |                            |               |
| Lead Block     |        |                         |                            |               |
| Steel          |        |                         |                            |               |

ABET outcome C was assessed with the following rubric. Student results are shown.

ABET c: An ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes;

| N = 16                                                                | Unsatisfactory                      | Developing                                                                                             | Satisfactory                                                                                                                             | Exemplary                                                                                                                                    |
|-----------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Correctly perform<br>buoyancy<br>experiment on<br>floating objects    | Fails to perform<br>adequately      | Performs<br>experiment, but is<br>unable to convert<br>collected data to<br>buoyant force<br>(3) 18.8% | Correctly sets up<br>experiment, but makes an<br>error in determining<br>mass, volume, or buoyant<br>force or forgets units<br>(3) 18.8% | Correctly sets up<br>experiment, collects data<br>(mass and volume), and<br>calculates buoyant force<br>all with correct units<br>(10) 62.5% |
| Correctly perform<br>buoyancy<br>experiment on the<br>floating beaker | Fails to perform<br>test adequately | Performs<br>experiment, but is<br>unable to convert<br>collected data to<br>buoyant force<br>(2) 12.5% | Correctly sets up<br>experiment, but makes an<br>error in determining<br>mass, volume, or buoyant<br>force or forgets units<br>(5) 31.3% | Correctly sets up<br>experiment, collects data<br>(mass and volume), and<br>calculates buoyant force<br>all with correct units<br>(9) 56.2%  |

| Correctly perform<br>buoyancy<br>experiment on large,<br>non-floating objects | Fails to perform<br>test adequately | Performs<br>experiment, but is<br>unable to convert<br>collected data to<br>buoyant force<br>(1) 6.3% | Correctly sets up<br>experiment, but makes an<br>error in determining<br>mass, volume, or buoyant<br>force or forgets units<br>(5) 31.3% | Correctly sets up<br>experiment, collects data<br>(mass and volume), and<br>calculates buoyant force<br>all with correct units<br>(10) 62.5% |
|-------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Correctly perform                                                             | Fails to perform                    | Performs                                                                                              | Correctly sets up                                                                                                                        | Correctly sets up                                                                                                                            |
| buoyancy                                                                      | test adequately                     | experiment, but is                                                                                    | experiment, but makes an                                                                                                                 | experiment, collects data                                                                                                                    |
| experiment on small                                                           |                                     | unable to convert                                                                                     | error in determining                                                                                                                     | (mass and volume), and                                                                                                                       |
| non-floating objects                                                          |                                     | collected data to                                                                                     | mass, volume, or buoyant                                                                                                                 | calculates buoyant force                                                                                                                     |
|                                                                               |                                     | buoyant force                                                                                         | force or forgets units                                                                                                                   | all with correct units                                                                                                                       |
|                                                                               |                                     | (1) 6.3%                                                                                              | (4) 25%                                                                                                                                  | (11) 68.7%                                                                                                                                   |
| Interpret                                                                     | Offers no                           | Performs                                                                                              | Performs experiments,                                                                                                                    | Interprets all 4                                                                                                                             |
| experiments to                                                                | interpretation                      | experiments and                                                                                       | but offers no overall                                                                                                                    | experiments fully to the                                                                                                                     |
| understand and                                                                | (.).                                | calculates buoyancy                                                                                   | interpretation of                                                                                                                        | concept of buoyancy                                                                                                                          |
| demonstrate                                                                   | (1) 6.3%                            | (with no or minor                                                                                     | buoyancy                                                                                                                                 |                                                                                                                                              |
| buoyancy                                                                      |                                     | error)                                                                                                |                                                                                                                                          | (7) 43.8%                                                                                                                                    |
|                                                                               |                                     |                                                                                                       | (5) 31.3%                                                                                                                                |                                                                                                                                              |
|                                                                               |                                     | (2) 18.8%                                                                                             |                                                                                                                                          |                                                                                                                                              |
| Analyzes error                                                                | Identifies no                       | Identifies only one                                                                                   | Identifies several error                                                                                                                 | Identifies several error                                                                                                                     |
| sources for process                                                           | error sources                       | error source                                                                                          | sources                                                                                                                                  | sources for the labs and                                                                                                                     |
| improvements                                                                  |                                     |                                                                                                       |                                                                                                                                          | offers suggestions for                                                                                                                       |
|                                                                               | (1) 6.3%                            | (2) 12.5%                                                                                             | (12) 75%                                                                                                                                 | improving (1) 6.3%                                                                                                                           |
|                                                                               |                                     |                                                                                                       |                                                                                                                                          |                                                                                                                                              |

**Continuous improvement**: Students, for the most part, performed at an acceptable level on this learning outcome. While they performed calculations correctly, many forget to include units. In the future, I must remind them of the need for proper units assigned to any number and include this requirement in grading homework. Given that this is a freshman level course, I am not surprised that students did not interpret results at a higher level or offer suggestions for improving the experimental design. In subsequent courses, I can discuss with them how to assess error sources and recommend improvements in design.

#### ABET (f): An ability to identify, analyze, and solve broadly defined engineering technology problems

#### This outcome was assessed with the following question from the last (3) exam:

1. A power plant uses pumped storage to maximize its energy efficiency. During low energy demand hours, water is pumped to an elevation of 20 m. The piping system is 200 meters long and includes one sharp edged tank inlet, one sharp edge tank exit, and 10 90° threaded smooth bends. The pipe diameter is 20 cm and  $\varepsilon/D = 0.01$ . The water's volumetric flow rate is 0.08 m<sup>3</sup>/ sec, which gives a velocity of 2.55 m/sec. Using the Moody table to estimate the friction factor, f, estimate total  $\Delta P$  for the system and the pump power requirement if the efficiency is 60%.

Assessment was performed with the following rubric with results shown:

| N=19                                                                                 | Unsatisfactory                                                                                         | Developing                                                                                                                       | Satisfactory                                                                                                  | Exemplary                                                                                                |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Correctly identifies<br>total correct<br>equation for P                              | Fails to identify<br>correct<br>pressure loss<br>equation<br>(1) 5.3%                                  | Sets up equation,<br>but with major<br>errors<br>(4)21.1%                                                                        | Correctly sets up equation<br>with one error in pressure<br>loss terms<br>(2) 10.5%                           | Correctly sets up<br>experiment, collects data<br>equation with all pressure<br>loss terms<br>(12) 63.1% |
| Correctly estimates<br>Reynolds number<br>and determines<br>Moody friction<br>factor | Fails to<br>estimate<br>Reynold's<br>number or<br>friction factor<br>(2)10.5%                          | Estimates Reynolds<br>number and friction<br>factor with major<br>error or multiple<br>minor ones<br>(3) 15.8%                   | Estimates Reynolds<br>number and friction<br>factor with minor error<br>(10) 52.6%                            | Correctly estimates<br>Reynolds number and<br>determines Moody friction<br>factor<br>(4) 21.1%           |
| Estimates ∆P from friction loss                                                      | Does not apply<br>correct<br>equation<br>(1) 5.3%                                                      | Major error in determining $\Delta P$ (2) 10.5%                                                                                  | Applies Moody eqn with<br>minor error or with wrong<br>friction factor to estimate<br>$\Delta P$<br>(8) 42.1% | Applies correct Moody<br>friction factor to Bernoilli<br>eqn for $\Delta P$<br>(8) 42.1%                 |
| Correctly estimates $\Delta P$ for fittings                                          | Fails to get K <sub>I</sub><br>values and/or<br>does not<br>estimate loss<br>from fittings<br>(2)10.5% | Leaves out more<br>than one K <sub>I</sub> for<br>fittings and/or does<br>not correctly apply<br>$\Delta P$ equation<br>(2)10.5% | Gets all but one Kı values<br>for fittings and/or makes<br>minor error in estimating<br>ΔP<br>(8) 42.1%       | Correctly gets the K <sub>I</sub> fric<br>loss values for all fittings<br>and estimates ΔP<br>(7) 36.9%  |
| Correctly calculates<br>pump requirement                                             | Fails to<br>calculate pump<br>power<br>(1)5.3%                                                         | Applies either<br>incorrect, but close,<br>equation or has<br>major errors<br>(3) 21.1%                                          | Applies correct equation<br>with minor error<br>(10) 52.6%                                                    | Applies total ΔP to correct<br>equation for pump power<br>(4) 21.1%                                      |

**Continuous improvement:** Students performed acceptably at identifying the correct equation, but were not consistently successful with calculating all the terms in the equation for pressure loss. Most students made minor errors in estimating the friction factor or determining the total pressure loss coefficient from pipe fittings and turns, etc...More students than I would consider to be acceptable had difficulty separating out the three terms in the equation (pressure loss from friction, minor losses from fittings and pipe configuration, and elevation change). The best way to learn is by practice, so next semester there will be more example problems and homework problems addressing multi-part equations. Since this is a first year course, students may not have encountered a three-term equation and may need more practice.

2. How will you use what you've learned from the data that was collected?

For each assessed outcome in the above report, Continuous Improvement was included to describe how the assessment will be used to improve student learning in subsequent semesters.