# Tetragonal (P4/mmm) Space Groups

Steven Dutch, Natural and Applied Sciences, University of Wisconsin - Green Bay
First-time Visitors: Please visit Site Map and Disclaimer. Use "Back" to return here.

To the right of each space group is a listing of coordinate points. These are the coordinates to which a general point (x,y,z) is transformed by the space group. Origins (called "equivalent points" in the International Tables), are additional points around which the points are transformed. For example, (0,0,0) refers to a corner of the unit cell, (1/2,1/2,1/2) to the center. All space groups have origin (0,0,0). For a space group with an additional origin (1/2,1/2,1/2), point (x,y,z) is also transformed to (1/2+x,1/2+y,1/2+z) and so on.

 123    P4/mmm(+x, +y, +z); (-x ,-y, +z); (+x, +y, -z); (-x, -y, -z); (-x, +y, +z); (+x, -y, +z); (-x, +y, -z); (+x, -y, -z); (-y, +x, +z); (+y, -x, +z); (-y, +x, -z); (+y, -x, -z); (+y, +x, +z); (-y, -x, +z); (+y, +x, -z); (-y, -x, -z); 124    P4/mcc(+x, +y, +z); (-x,-y,+z); (+x, +y, -z); (-x, -y, -z); (-y, +x, +z); (+y,-x,+z); (-y, +x, -z); (+y, -x, -z); (-x, +y, 1/2+z); (+x,-y, 1/2+z); (-x, +y, 1/2-z); (+x, -y, 1/2-z) (+y, +x, 1/2+z); (-y,-x, 1/2+z); (-y, -x, 1/2-z); (+y, +x, 1/2-z) 125    P4/nbm(+x, +y, +z); (-x, -y, +z); (1/2+x, 1/2+y, -z); (1/2-x, 1/2-y, -z); (-x, +y, -z); (+x, -y, -z); (1/2+x, 1/2-y, +z); (1/2-x, 1/2+y, +z); (-y, +x, +z); (+y, -x, +z); (1/2-y, 1/2+x, -z); (1/2+y, 1/2-x, -z); (+y, +x, -z); (-y, -x, -z); (1/2+y, 1/2+x, +z); (1/2-y, 1/2-x, +z); 126    P4/ncc (+x, +y, +z); (-x, -y, +z); (1/2+x, 1/2+y, 1/2-z); (1/2-x, 1/2-y, 1/2-z); (-x, +y, -z); (+x, -y, -z); (1/2-x, 1/2+y, 1/2+z); (1/2+x, 1/2-y, 1/2+z); (-y, +x, +z); (+y, -x, +z); (1/2-y, 1/2+x, 1/2-z); (1/2+y, 1/2-x, 1/2-z); (+y, +x, -z); (-y, -x, -z); (1/2+y, 1/2+x, 1/2+z); (1/2-y, 1/2-x, 1/2+z); 127    P4/mbm(+x, +y, +z); (-x, -y, +z); (1/2+x, 1/2-y, -z); (1/2-x, 1/2+y, +z); (+x, +y, -z); (-x, +y, -z); (1/2+x, 1/2-y, -z); (1/2-x, 1/2+y, -z); (-y, +x, +z); (+y, -x, +z); (1/2+y, 1/2+x, +z); (1/2-y, 1/2-x, +z); (-y, +x, -z); (+y, -x, -z); (1/2+y, 1/2+x, -z); (1/2-y, 1/2-x, -z); 128    P4/mnc Fix figure(+x, +y, +z); (-x, -y, +z); (1/2+x, 1/2-y, 1/2-z); (1/2-x, 1/2+y, 1/2+z); (+x, +y, -z); (-x, -y, -z); (1/2+x, 1/2-y, 1/2-z); (1/2-x, 1/2+y, 1/2-z); (-y, +x, +z); (+y, -x, +z); (1/2+y, 1/2+x, 1/2+z); (1/2-y, 1/2-x, 1/2+z); (-y, +x, -z); (+y, -x, -z); (1/2+y, 1/2+x, 1/2-z); (1/2-y, 1/2-x, 1/2-z); 129    P4/nmm(+x, +y, +z); (-x, -y, +z); (1/2+x, 1/2+y, -z); (1/2-x, 1/2-y, -z); (-x, +y, +z); (+x, -y, +z); (1/2-x, 1/2+y, -z); (1/2+x, 1/2-y, -z); (-y, +x, -z); (+y, -x, -z); (1/2-y, 1/2+x, +z); (1/2+y, 1/2-x, +z); (+y, +x, -z); (-y, -x, -z); (1/2+y, 1/2+x, +z); (1/2-y, 1/2-x, +z); 130    P4/ncc(+x, +y, +z); (-x, +y, 1/2+z); (1/2+x, 1/2+y, -z); (1/2-x, 1/2+y, 1/2-z); (-x, -y, +z); (+x, -y, 1/2+z); (1/2-x, 1/2-y, -z); (1/2+x, 1/2-y, 1/2-z); (-y, +x, -z); (+y, +x, 1/2-z); (1/2-y, 1/2+x, +z); (1/2-y, 1/2-x, 1/2+z); (+y, -x, -z); (-y, -x, 1/2-z); (1/2+y, 1/2-x, +z); (1/2+y, 1/2+x, 1/2+z);