Archimedean Tilings

Steven Dutch, Natural and Applied Sciences, University of Wisconsin - Green Bay
First-time Visitors: Please visit Site Map and Disclaimer. Use "Back" to return here.


There are three uniform tilings of the plane by regular polygons: with squares, triangles and hexagons. By uniform we mean that every vertex is the same. (If we eliminate that restriction there are an infinite number - we could stack bands of squares and triangles in any sequence desired.) Thus we can symbolize these three regular tilings as 333333, 4444, and 666, where each symbol denotes one of the polygons at each vertex.

In addition there are other tilings with combinations of polygons. The only possible combinations besides those above are:

These plus the three regular tilings make a total of eleven, called the Archimedean Tilings. Other sets of regular polygons will fit around a single vertex, for example 5-5-10, but they can't be extended to cover the plane completely.

tilings 4444, 666, 333333, 33344 tilings 884, 43433

Even the Experts can be Fooled

a tiling illusion

More than one geometry text has claimed that tiling 43433 has a right- and left- handed version. If we draw the pattern so that one set of squares is upright, the other set appears to be tilted to the right or left. In reality, the mirror planes, which run along the edges shared by pairs of triangles, are just hard to see in this orientation. The tiling actually has symmetry p4gm.

tilings 43433, 6434, 12-6-4, 12-3-12

Tiling 63333 really is enantiomorphic, that is, lacks mirror planes. It therefore has a left- and right- handed version as shown below.

tilings 6363, 633333


Return to Symmetry Index
Return to Professor Dutch's Home page

Created 25 Sep 1997, Last Update 2 July 1999

Not an official UW Green Bay site