Phosphorus Forms at Different Spatial Scales in The Lower Fox River Sub-Basin

Nicholas A. Reckinger, Kevin J. Fermanich, Paul D. Baumgart

University of Wisconsin — Green Bay

Lower Fox River Watershed Monitoring Project

www.uwgb.edu/WATERSHED

The Lower Fox River Watershed Monitoring Program

2007 LFRWMP Student Symposium
Green Bay, WI – March 14, 2007
Primary Goal

To better understand and predict the forms of phosphorus in agricultural watersheds to enhance management decisions and improve the usability and biological integrity of our water resources.
Presentation Outline

1. Effects of Phosphorus Loading
2. Phosphorus Forms
3. Description of Study Area
4. Apple Creek Phosphorus Forms Study
 - Background-Methods-Results-Conclusions
 - Multi-field Analysis with the Wisconsin P-Index
5. Conclusions
Why Care About P Loading?
How Can We Decrease P Loading?

- Riparian Buffers
- Grassed Water Ways
- Vegetative Filter Strips

- Decrease P in soils
- Decrease fertilizer use
Grassed Waterway – Apple Creek
Presentation Outline

1. Effects of Phosphorus Loading

2. Phosphorus Forms

3. Description of Study Area

4. Apple Creek Phosphorus Forms Study
 - Background-Methods-Results-Conclusions
 - Multi-field Analysis with the Wisconsin P-Index

5. Conclusions
Why Care about P-Forms?

- Most Dissolved P is bioavailable
 - Bioavailable = Algae can consume and grow

- Particulate P can be transformed to bioavailable P in the stream

- Implications for Best Management Practices
Presentation Outline

1. Effects of Phosphorus Loading
2. Phosphorus Forms
3. Description of Study Area
4. Apple Creek Phosphorus Forms Study
 - Background-Methods-Results-Conclusions
 - Multi-field Analysis with the Wisconsin P-Index
5. Conclusions
Apple Creek Watershed

- 117 km²
- 63% Agriculture
- 26% urban development
- Rapidly urbanizing southern section
Presentation Outline

1. Effects of Phosphorus Loading
2. Phosphorus Forms
3. Description of Study Area
4. Apple Creek Phosphorus Forms Study
 - Background-Methods-Results-Conclusions
 - Multi-field Analysis with the Wisconsin P-Index
5. Conclusions
P-Forms Objectives

- Determine DP & TP concentrations and the DP fraction in streams at different scales
- Relate results to watershed characteristics (i.e. soils, topography, and land management)
- Apply Wisconsin P Risk Index to source areas and compare to water quality
P-Forms Methods
Monitoring Methods

- **Study Period**: 2004 – 2006

- **EVENT SAMPLING**: Targeted uniform precipitation events
 - Grab samples at 11 source area (0.2 to 2.3 km²) and 4 integrator sites (12 to 85 km²), at or near peak flow

- **Main stem USGS site**: Continuous discharge & automated sample collection (117 km²)

- **TSS, TP, and DP analysis** at Green Bay Metropolitan Sewage District Lab
Results

P-Forms Study
WY 2004-2006
Total Phosphorus (mg/L) – 2004 - 2006

Source Area Mean: 0.56 mg/L

Integrator Mean: 0.43 mg/L
Dissolved Phosphorus (mg/L) – 2004 - 2006

Source Area
Mean: 0.21 mg/L

Integrator Mean:
0.18 mg/L

Max. 5.51
Dissolved/Total Phosphorus Ratio – 2004 - 2006

Source Area Mean: 40%
Integrator Mean: 42%
Soil-Test P levels in Apple Creek Sub-Watershed (ppm Bray-P1)
Soil Test P vs. DP in Streams

- Strong response to increasing STP on DP in streams

\[y = 0.0057x - 0.0084 \]

\[R^2 = 0.8682 \]
1. Effects of Phosphorus Loading

2. Phosphorus Forms

3. Description of Study Area

4. Apple Creek Phosphorus Forms Study
 - Background-Methods-Results-Conclusions
 - Multi-field Analysis with the Wisconsin P-Index

5. Conclusions
Conclusions

- DP fraction is high at main stem sites (40-70%)
 - Similar to earlier findings in LFR Sub-Basin
- In stream DP conc. predicted well by soil test P (Bray-P1) and P-Index
- In some areas, managing nutrients (i.e. lowering STP) may be the most effective means of reducing TP in streams
- DP fractions were similar at the small scale to previous findings
- No obvious net concentration change observed at different scales

Main stem → Integrator → Source Areas
“…the answer to the question, Which form of P is predominant in surface runoff from agricultural land, dissolved or particulate?, is that it depends very much on the individual circumstances.”

Hart et. al., 2004
Acknowledgements

A special thanks to the following people for their assistance with this project:

- Dave Graczyk, Paul Reneau, Dale Robetson, and Troy Rutter (U.S. Geological Survey)
- John Kennedy and Tracy Valenta, GBMSD
- Oneida Nation
- Sue McBurney, Jim Poweleit, Ann Francart (Outagamie LCD)
- Laura Ward Good (UW-Madison)
- Laurie Miller (Outagamie FSA)
- Jeff Polenske and Nathan Nysse (Polenske Agronomic Consulting Inc.)
- Bud Harris, Dave Dolan, Jesse Baumann, Jessie Fink, Jon Habeck, and Erika Sisal (UWGB)
- Arjo Wiggins Appleton, Inc.
Questions?

www.uwgb.edu/WATERSHED
E-mail: reckingn@uwgb.edu