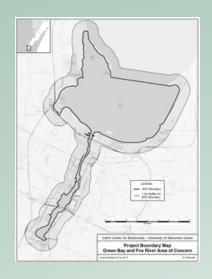
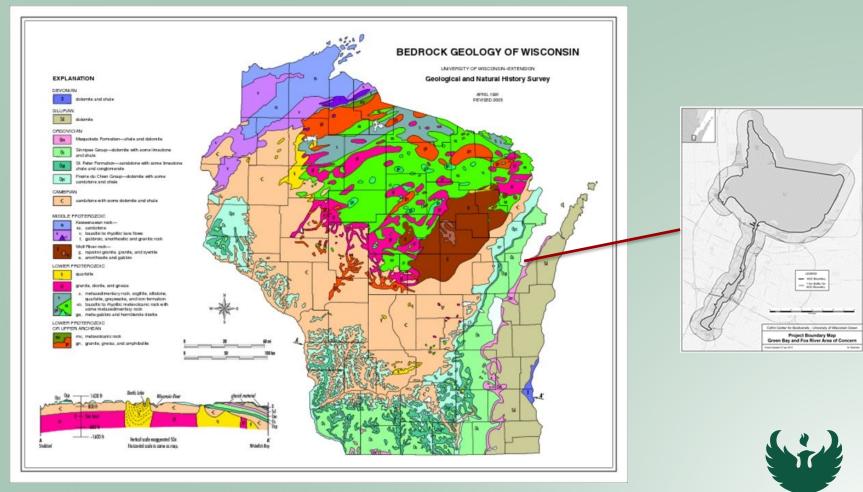

BAT DIVERSITY AND ABUNDANCE IN THE COASTAL ZONE OF LOWER GREEN BAY, LAKE MICHIGAN



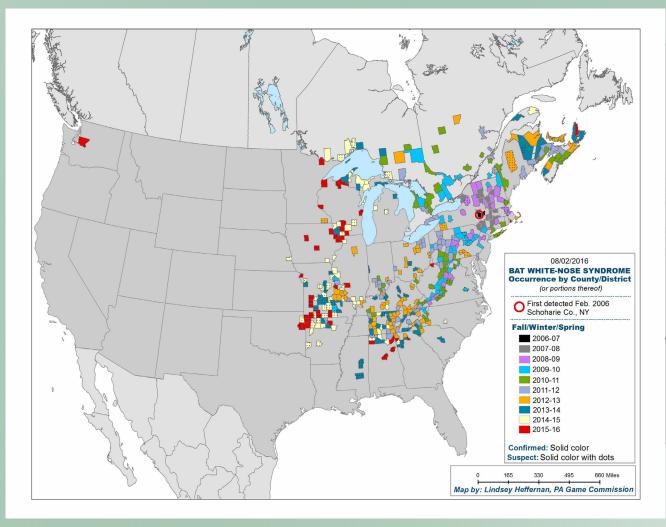
Jeremiah Shrovnal

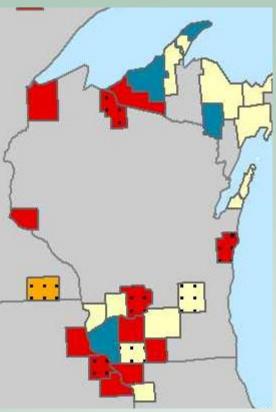
GREEN BAY AREA OF CONCERN (AOC)


U.S.-Canada Great Lakes Water Quality Agreement (1972)

LOWER GREEN BAY

GEOLOGY OF GREEN BAY


ECOLOGICAL BENEFITS


- Herbivory control & Fungal suppression
 - Excess of \$1 billion value in corn industry [1]
 - Loss of species could lead to agricultural losses of \$3.7 billion - \$53 billion [2]
- They eat mosquitoes! [3]

PSEUDOGYMNOASCUS DESTRUCTANS

WHITE NOSE SYNDROME

WISCONSIN FAUNA

- State Threatened
 - Big Brown Bat (Eptesicus fuscus)
 - Eastern Pipistrelle (Perimyotis subflavus)
 - Little Brown Bat (Myotis lucifugus)
 - Northern Long-eared Bat (Myotis septentrionalis)
- State Watch List
 - Silver-haired Bat (Lasionycteris noctivagans)
 - Eastern Red Bat (Lasiurus borealis)
 - Hoary Bat (Lasiurus cinereus)

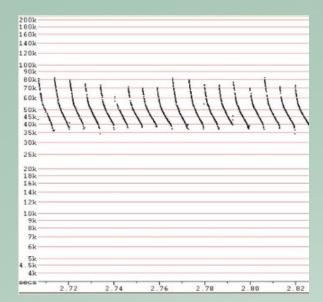
HOW TO ESTIMATE BAT ABUNDANCE?

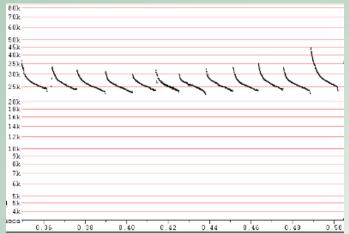
ANALOOK WALKABOUT

- Logs acoustic signatures
- Takes Time, GPS coordinates, Temperature (°C), and Relative Humidity

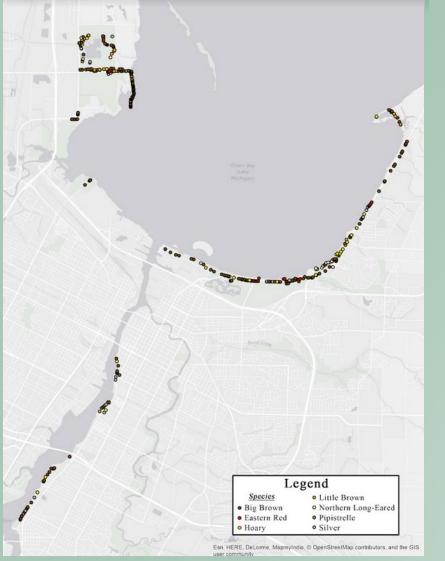
GOALS

- Document Green Bay Chiropterans
 - Determine the species present
 - Estimate habitat utilization and relative abundance
 - Determine factors that may influence presence

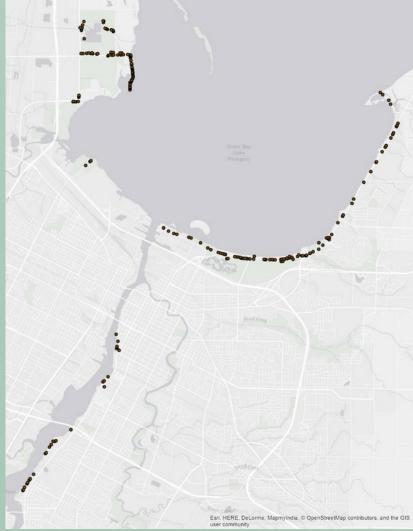




METHODS


- Walking surveys using Anabat Walkabout from May to September
- Analyzed zero cross files using AnalookW
- Modeling done using R (3.0.2) package lme4 (1.1-12) [4]

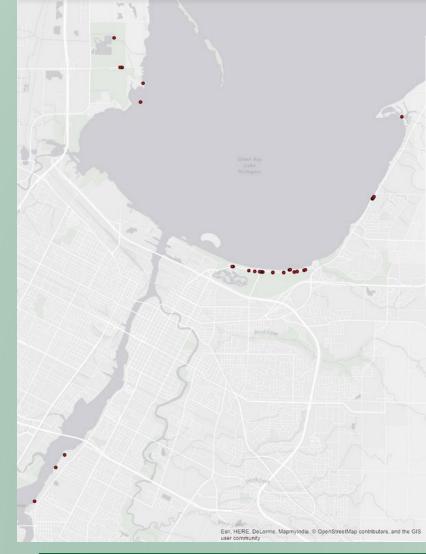
RESULTS


Total Registries

•	Big Brown	= 238
•	Eastern Red Bat	= 31
•	Hoary	= 51
•	Little Brown	= 35
•	Northern Long-eared Bat	= 21
•	Eastern Pipistrelle	= 2
•	Silver-haired Bat	= 47

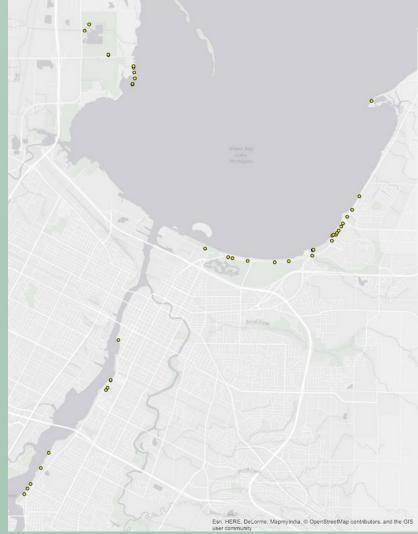
Total = 425

RESULTS – BIG BROWN BAT



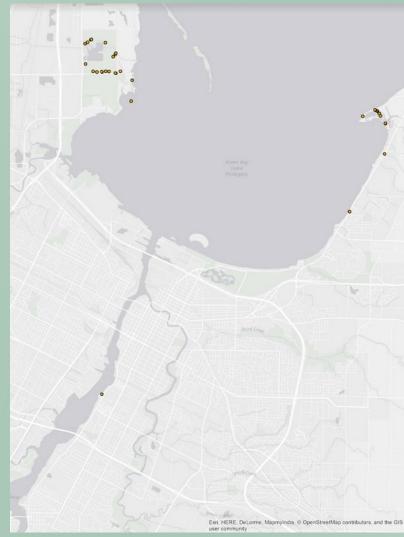
	East Shore	Fox River	West Shore	Total
June	3	0	20	23
July	4	23	35	62
August	51	11	42	104
September	38	0	11	49
Total	96	34	108	238

RESULTS – EASTERN RED BAT



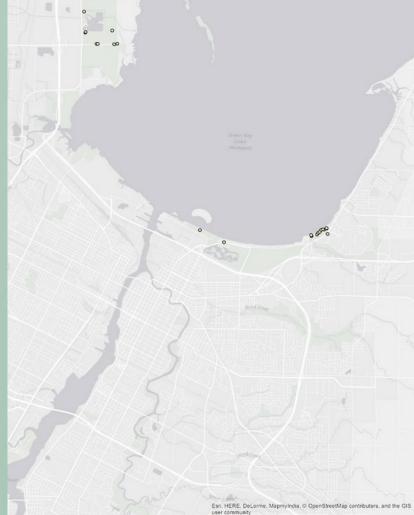
	East Shore	Fox River	West Shore	Total
June	3	0	0	3
July	0	1	2	3
August	19	1	4	24
September	0	1	0	1
Total	22	3	6	31

Results – Hoary Bat



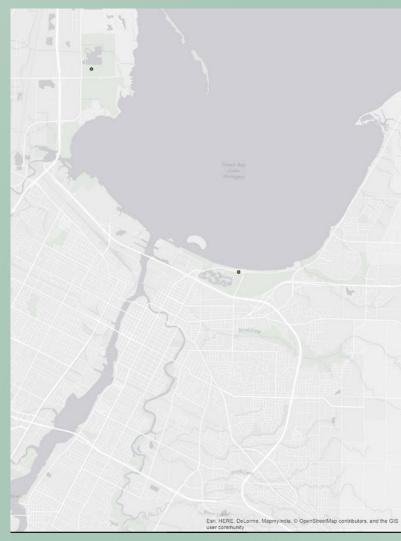
	East Shore	Fox River	West Shore	Total
June	6	0	0	6
July	4	17	10	31
August	11	2	0	13
September	1	0	0	1
Total	22	19	10	51

RESULTS – LITTLE BROWN BAT



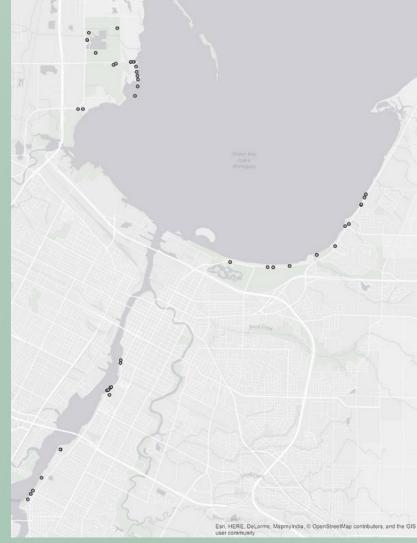
	East Shore	Fox River	West Shore	Total
June	0	0	8	8
July	11	1	11	23
August	2	0	1	3
September	1	0	0	1
Total	14	1	20	35

Results – Northern Long-Eared Bat



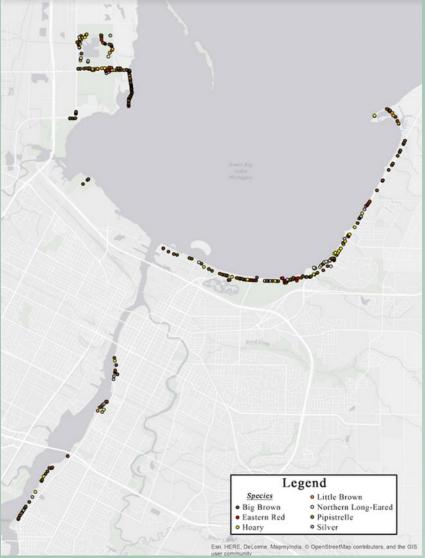
	East Shore	Fox River	West Shore	Total
June	0	0	0	0
July	3	0	3	6
August	9	0	5	14
September	1	0	0	1
Total	13	0	8	21

Results – Eastern Pipistrelle



	East Shore	Fox River	West Shore	Total
June	0	0	0	0
July	0	0	1	1
August	1	0	0	1
September	0	0	0	0
Total	1	0	1	1

Results – Silver-haired Bat



		East Shore	Fox River	West Shore	Total
12	June	1	0	0	1
	July	1	10	6	17
	August	7	5	14	26
	September	3	0	0	3
A MANUT	Total	12	15	20	47

RESULTS

n = 425

RESULTS - ACTIVITY

	East Shore	Fox River	West Shore	Total
Transects	32	14	21	67
Hours	24	10	11	45
Registries	1034	234	705	1973

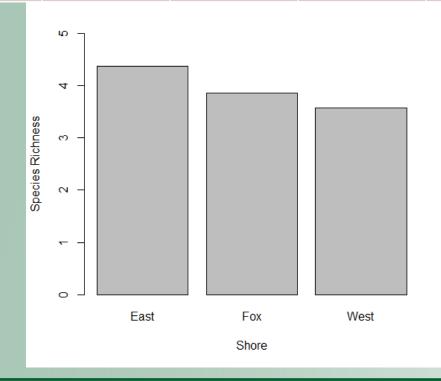
Linear Mixed Effects Model

Dependent variable: log (total bat detections)

Random effect:

site

*Model	[site] + shore	[site] + shore + RH	[site] + shore + temp	[site] + shore + RH + temp
[site] (null model)	p < 0.001	p < 0.001	p < 0.001	p < 0.001
[site] + shore	-	p < 0.001	p = 0.318	p < 0.003
[site] + shore + RH		-	p > 0.500	p = 0.835
[site] + shore + temp			-	p < 0.002
[site] + shore + RH + temp				-


*models were compared by analysis of deviance using AIC criteria

Conclusion: Shore and RH (negative) were significant predictors.

RESULTS - RICHNESS

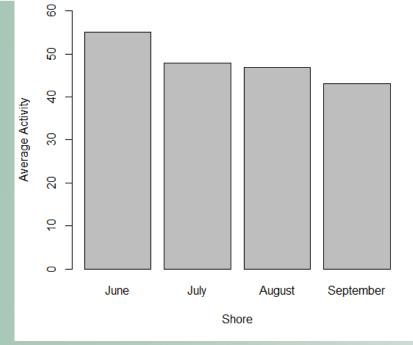
	East Shore	Fox River	West Shore	Total
Transects	32	14	21	67
Hours	24	10	11	45
Registries	1034	234	705	1973

Linear Mixed Effects Model

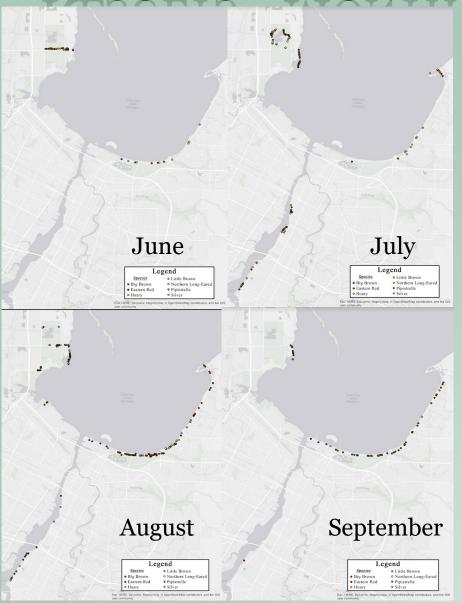
Dependent variable: species richness

Random effect:

site


*Model	[site] + shore	[site] + shore + RH	[site] + shore + temp	[site] + shore + RH + temp
[site] (null model)	p < 0.192	p < 0.221	p < 0.019	p < 0.039
[site] + shore	-	p < 0.294	p < 0.010	p < 0.034
[site] + shore + RH		-	p < 0.001	p < 0.017
[site] + shore + temp			-	p = 0.675
[site] + shore + RH + temp				-

Conclusion: Temperature (positive) is the only significant predictor.


RESULTS

	East Shore	Fox River	West Shore	Total
June Transects	4	0	2	6
July Transects	7	6	4	17
August Transects	15	6	11	32
September Transects	6	2	4	12

Results - Month

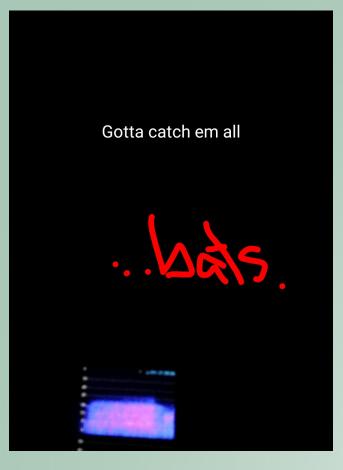
 $\begin{array}{rl} Monthly\\ Registries\\ June &= 152\\ July &= 562\\ August &= 573\\ September &= 386 \end{array}$

Total = 425

GOING FORWARD

- Confirm identifications
- Estimate missing locations
- Add further environmental variables to data

THANKS TO...


Cofrin Center for Biodiversity

- Dr. Howe and Dr. Wolf
 - Paul White
 - Jennifer Redell
 - Jordan Marty
 - Collin Moratz

QUESTIONS?

URCES

J. J. Maine, J. G. Boyles (2015) Bats initiate vital agroecological interaction in corn. *PNAS* **112**: 12438-12443.
J. G. Boyles, P. M. Cryan, G. F. McCracken, T. H. Kunz (2011) Economic importance of bats in agriculture. *Science* **332**: 41-42.

[3] A. Dollinger (2016) Devouring 1,00 Mosquitoes an Hour, Bats Are Now Welcome Guests as Zika Fears Rise. *The New York Times*. A21.

[4] Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using Ime4. Journal of Statistical Software, 67(1), 1-48.<<u>doi:10.18637/jss.v067.i01</u>>.

Alves DMCC, Terribile LC, Brito D. 2014. The Potential Impact of White-Nose Syndrome on the Conservation Status of North American Bats. PLoS ONE **9**: e107395.

Blehert D, Hicks A, Behr M, Meteyer C, Berlowski-Zier B, Buckles E, Coleman J, Darling S, Gargas A, Niver R, Okoniewski J, Rudd R, Stone W. 2009. Bat White-Nose Syndrome: An Emerging Fungal Pathogen? Science **323**: 227.

Boire N, Zhang S, Khuvis J, Lee R, Rivers J, Crandall P, Keel MK, Parrish N. 2016. Potent Inhibition of *Pseudogymnoascus destructans*, the Causative Agent of White-Nose Syndrome in Bats, by Cold-Pressed, Terpeneless, Valencia Orange Oil. PLoS ONE **11**: e0148473.

Brooks RT. 2011. Declines in summer bat activity in central New England 4 years following the initial detection of white-nose syndrome. Biodiversity and Conservation **20**: 2537-2541.

Cohn JP. 2012. Bats and White-Nose Syndrome Still a Conundrum. BioScience 62: 444.

Fenton MB. 2012. Bats and white-nose syndrome. PNAS 109: 6794-6795.

